BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 34420301)

  • 1. High-Efficiency and Versatile Approach To Fabricate Diverse Metal-Organic Framework Coatings on a Support Surface as Stationary Phases for Electrochromatographic Separation.
    Ji B; Yi G; Gui Y; Zhang J; Long W; You M; Xia Z; Fu Q
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):41075-41083. PubMed ID: 34420301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation.
    Gu ZY; Yang CX; Chang N; Yan XP
    Acc Chem Res; 2012 May; 45(5):734-45. PubMed ID: 22404189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homomesoporous Metal-Organic Framework for High-Performance Electrochromatographic Separation.
    Gui Y; Zeng J; Wang L; Long W; You M; Tao X; Huang Y; Xia Z; Rao L; Fu Q
    Anal Chem; 2022 Dec; 94(48):16720-16727. PubMed ID: 36397197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Application of gas chromatography separation based on metal-organic framework material as stationary phase].
    Tang W; Meng S; Xu M; Gu Z
    Se Pu; 2021 Jan; 39(1):57-68. PubMed ID: 34227359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale Hierarchically Micro- and Mesoporous Metal-Organic Frameworks for High-Resolution and High-Efficiency Capillary Electrochromatographic Separation.
    Ji B; Yi G; Zhang K; Zhang Y; Gui Y; Gao D; Zeng J; Wang L; Xia Z; Fu Q
    Anal Chem; 2020 Dec; 92(23):15655-15662. PubMed ID: 33175499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Research progress on the construction and applications of metal-organic frameworks in chromatographic stationary phases].
    Yan MT; Long WW; Tao XP; Wang D; Xia ZN; Fu QF
    Se Pu; 2023 Oct; 41(10):879-890. PubMed ID: 37875410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Rational design of high performance metal organic framework stationary phase for gas chromatography].
    Yang H; Tang WQ; Zeng C; Meng SS; Xu M
    Se Pu; 2023 Oct; 41(10):853-865. PubMed ID: 37875408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ synthesis of MIL-100(Fe) in the capillary column for capillary electrochromatographic separation of small organic molecules.
    Xu Y; Xu L; Qi S; Dong Y; ur Rahman Z; Chen H; Chen X
    Anal Chem; 2013 Dec; 85(23):11369-75. PubMed ID: 24187953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Advances in polydopamine surface modification for capillary electrochromatography].
    Yi G; Ji B; Xia Z; Fu Q
    Se Pu; 2020 Sep; 38(9):1057-1068. PubMed ID: 34213272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Research progress of stationary phase of gas chromatography based on chiral organic frameworks].
    Zhou S; Kuang Y; Zheng J; Ouyang G
    Se Pu; 2024 Jan; 42(1):1-12. PubMed ID: 38197202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Preparation and application of chromatographic stationary phase based on two-dimensional materials].
    Zheng DS; Tang WQ; Zhu JP; Gu ZY
    Se Pu; 2024 Jun; 42(6):524-532. PubMed ID: 38845513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ room-temperature preparation of a covalent organic framework as stationary phase for high-efficiency capillary electrochromatographic separation.
    Fu Y; Li Z; Li Q; Hu C; Liu Y; Sun W; Chen Z
    J Chromatogr A; 2021 Jul; 1649():462239. PubMed ID: 34034110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Research progress on preparation and applications of covalent organic framework-based chromatographic stationary phases].
    Liu J; Wu F; Gan L; Jin LY; Lin ZA
    Se Pu; 2023 Oct; 41(10):843-852. PubMed ID: 37875407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ growth of imine-based covalent organic framework as stationary phase for open-tubular capillary electrochromatographic separation.
    Niu X; Qi S; Sun J; Zhu A; Wang F; Wu M; Lv W; Chen H
    J Sep Sci; 2024 Jan; 47(2):e2300686. PubMed ID: 38286732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ growth of imine-based covalent organic framework as stationary phase for high-efficiency electrochromatographic separation.
    Li Z; Liao Z; Hu J; Chen Z
    J Chromatogr A; 2023 Apr; 1694():463905. PubMed ID: 36881971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-situ growth of a metal organic framework composed of zinc(II), adeninate and biphenyldicarboxylate as a stationary phase for open-tubular capillary electrochromatography.
    Li Z; Mao Z; Chen Z
    Mikrochim Acta; 2019 Jan; 186(2):53. PubMed ID: 30617659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Zn-based MOFs stationary phase with large pores for capillary electrochromatography.
    Tang P; Bao T; Chen Z
    Electrophoresis; 2016 Aug; 37(15-16):2181-9. PubMed ID: 27129916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of value-added metal-organic frameworks for high-performance liquid chromatography. Towards green chromatographic columns.
    Aqel A; Alkatheri N; Ghfar A; Alsubhi AM; ALOthman ZA; Badjah-Hadj-Ahmed AY
    J Chromatogr A; 2021 Feb; 1638():461857. PubMed ID: 33486220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polydopamine-supported immobilization of covalent-organic framework-5 in capillary as stationary phase for electrochromatographic separation.
    Bao T; Tang P; Kong D; Mao Z; Chen Z
    J Chromatogr A; 2016 May; 1445():140-8. PubMed ID: 27062718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Core-shell MOFs-based composites of defect-functionalized for mixed-mode chromatographic separation.
    Si T; Wang L; Zhang H; Lu X; Liang X; Wang S; Guo Y
    J Chromatogr A; 2022 May; 1671():463011. PubMed ID: 35398699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.