BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 34420301)

  • 21. An immobilized carboxyl containing metal-organic framework-5 stationary phase for open-tubular capillary electrochromatography.
    Bao T; Tang P; Mao Z; Chen Z
    Talanta; 2016 Jul; 154():360-6. PubMed ID: 27154687
    [TBL] [Abstract][Full Text] [Related]  

  • 22. γ-Cyclodextrin metal-organic framework supported by polydopamine as stationary phases for electrochromatographic enantioseparation.
    Li Z; Mao Z; Zhou W; Chen Z
    Talanta; 2020 Oct; 218():121160. PubMed ID: 32797914
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In situ preparation of multilayer coated capillary column with HKUST-1 for separation of neutral small organic molecules by open tubular capillary electrochromatography.
    Xu YY; Lv WJ; Ren CL; Niu XY; Chen HL; Chen XG
    J Chromatogr A; 2018 Jan; 1532():223-231. PubMed ID: 29203115
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of isostructural metal-organic frameworks coated capillary columns for the gas chromatographic separation of alkane isomers.
    Fan L; Yan XP
    Talanta; 2012 Sep; 99():944-50. PubMed ID: 22967647
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Construction of MOFs@COFs composite material as stationary phase for efficient separation of diverse organic compounds.
    Zhang T; Sun Y; Feng X; Li J; Zhao W; Xiang G; He L; Zhang S
    Anal Chim Acta; 2024 Feb; 1288():342160. PubMed ID: 38220292
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new strategy for the preparation of core-shell MOF/Polymer composite material as the mixed-mode stationary phase for hydrophilic interaction/ reversed-phase chromatography.
    Si T; Lu X; Zhang H; Liang X; Wang S; Guo Y
    Anal Chim Acta; 2021 Jan; 1143():181-188. PubMed ID: 33384116
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Covalent organic framework TpPa-1 as stationary phase for capillary electrochromatographic separation of drugs and food additives.
    Kong D; Chen Z
    Electrophoresis; 2018 Nov; 39(22):2912-2918. PubMed ID: 30194854
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dispersive hierarchically porous composites based on defective MOFs as mixed-mode stationary phases for chromatographic separation.
    Si T; Wang S; Guo Y; Liang X; Rong R
    Mikrochim Acta; 2024 Mar; 191(4):198. PubMed ID: 38483636
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mixed Metal-Organic Framework Stationary Phases for Liquid Chromatography.
    Kioka K; Mizutani N; Hosono N; Uemura T
    ACS Nano; 2022 Apr; 16(4):6771-6780. PubMed ID: 35341245
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of crystalline covalent organic framework as stationary phase for capillary electrochromatography.
    Li Q; Li Z; Fu Y; Hu C; Chen Z
    J Chromatogr A; 2022 Jun; 1673():463070. PubMed ID: 35526299
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of isoreticular metal-organic framework coated capillary columns for high-resolution gas chromatographic separation of persistent organic pollutants.
    Gu ZY; Jiang JQ; Yan XP
    Anal Chem; 2011 Jul; 83(13):5093-100. PubMed ID: 21599025
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advances in sol-gel based columns for capillary electrochromatography: sol-gel open-tubular columns.
    Malik A
    Electrophoresis; 2002 Nov; 23(22-23):3973-92. PubMed ID: 12481288
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lipase-based MIL-100(Fe) biocomposites as chiral stationary phase for high-efficiency capillary electrochromatographic enantioseparation.
    Sun G; Choi DM; Xu H; Baeck SH; Row KH; Tang W
    Mikrochim Acta; 2023 Feb; 190(3):84. PubMed ID: 36749401
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chiral 3D open-framework material Ni(D-cam)(H2O)2 used as GC stationary phase.
    Xie S; Wang B; Zhang X; Zhang J; Zhang M; Yuan L
    Chirality; 2014 Jan; 26(1):27-32. PubMed ID: 24408851
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancing Separation Abilities of "Low-Performance" Metal-Organic Framework Stationary Phases through Size Control.
    Meng SS; Han T; Gu YH; Zeng C; Tang WQ; Xu M; Gu ZY
    Anal Chem; 2022 Oct; 94(41):14251-14256. PubMed ID: 36194134
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metal-Organic Framework Films and Their Potential Applications in Environmental Pollution Control.
    Ma X; Chai Y; Li P; Wang B
    Acc Chem Res; 2019 May; 52(5):1461-1470. PubMed ID: 31074608
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MOF-74@SiO
    Liu M; Jing Y; Zhang L; Zhou Y; Yan H; Song Y; Qiao X
    J Chromatogr B Analyt Technol Biomed Life Sci; 2021 Jan; 1163():122506. PubMed ID: 33388523
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid separation of non-polar and weakly polar analytes with metal-organic framework MAF-5 coated capillary column.
    Tian J; Lu C; He CT; Lu TB; Ouyang G
    Talanta; 2016 May; 152():283-7. PubMed ID: 26992522
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chiral metal-organic framework used as stationary phases for capillary electrochromatography.
    Fei ZX; Zhang M; Zhang JH; Yuan LM
    Anal Chim Acta; 2014 Jun; 830():49-55. PubMed ID: 24856511
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metal-Organic Frameworks-Based Immobilized Enzyme Microreactors Integrated with Capillary Electrochromatography for High-Efficiency Enzyme Assay.
    Liu R; Yi G; Ji B; Liu X; Gui Y; Xia Z; Fu Q
    Anal Chem; 2022 May; 94(17):6540-6547. PubMed ID: 35465669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.