BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1237 related articles for article (PubMed ID: 34420307)

  • 1. Ti-Catalyzed and -Mediated Oxidative Amination Reactions.
    Tonks IA
    Acc Chem Res; 2021 Sep; 54(17):3476-3490. PubMed ID: 34420307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic formal [2+2+1] synthesis of pyrroles from alkynes and diazenes via Ti(II)/Ti(IV) redox catalysis.
    Gilbert ZW; Hue RJ; Tonks IA
    Nat Chem; 2016 Jan; 8(1):63-8. PubMed ID: 26673265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of Ti-Catalyzed Oxidative Nitrene Transfer in [2 + 2 + 1] Pyrrole Synthesis from Alkynes and Azobenzene.
    Davis-Gilbert ZW; Wen X; Goodpaster JD; Tonks IA
    J Am Chem Soc; 2018 Jun; 140(23):7267-7281. PubMed ID: 29763560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ti-Catalyzed Multicomponent Oxidative Carboamination of Alkynes with Alkenes and Diazenes.
    Davis-Gilbert ZW; Yao LJ; Tonks IA
    J Am Chem Soc; 2016 Nov; 138(44):14570-14573. PubMed ID: 27790910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Titanium-catalyzed multicomponent couplings: efficient one-pot syntheses of nitrogen heterocycles.
    Odom AL; McDaniel TJ
    Acc Chem Res; 2015 Nov; 48(11):2822-33. PubMed ID: 26295382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advances in First-Row Transition Metal-Catalyzed Reductive Coupling Reactions for π-Bond Functionalization and C-Glycosylation.
    Wei Y; Lin LQH; Lee BC; Koh MJ
    Acc Chem Res; 2023 Nov; 56(22):3292-3312. PubMed ID: 37917928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cobalt catalysis involving π components in organic synthesis.
    Gandeepan P; Cheng CH
    Acc Chem Res; 2015 Apr; 48(4):1194-206. PubMed ID: 25854540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multicomponent Pyrazole Synthesis from Alkynes, Nitriles, and Titanium Imido Complexes via Oxidatively Induced N-N Bond Coupling.
    Pearce AJ; Harkins RP; Reiner BR; Wotal AC; Dunscomb RJ; Tonks IA
    J Am Chem Soc; 2020 Mar; 142(9):4390-4399. PubMed ID: 32043879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong Preference of the Redox-Neutral Mechanism over the Redox Mechanism for the Ti
    Guo J; Lu Y; Zhao R; Liu Z; Menberu W; Wang ZX
    Chemistry; 2018 May; 24(27):7010-7025. PubMed ID: 29709085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silver-Catalyzed Activation of Terminal Alkynes for Synthesizing Nitrogen-Containing Molecules.
    Sivaguru P; Cao S; Babu KR; Bi X
    Acc Chem Res; 2020 Mar; 53(3):662-675. PubMed ID: 32078302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition-metal-catalyzed C-N bond forming reactions using organic azides as the nitrogen source: a journey for the mild and versatile C-H amination.
    Shin K; Kim H; Chang S
    Acc Chem Res; 2015 Apr; 48(4):1040-52. PubMed ID: 25821998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhodium-Catalyzed (5 + 2) and (5 + 1) Cycloadditions Using 1,4-Enynes as Five-Carbon Building Blocks.
    Blaszczyk SA; Glazier DA; Tang W
    Acc Chem Res; 2020 Jan; 53(1):231-243. PubMed ID: 31820914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. α-Diimine synthesis
    Frye CW; Egger DT; Kounalis E; Pearce AJ; Cheng Y; Tonks IA
    Chem Sci; 2022 Feb; 13(5):1469-1477. PubMed ID: 35222931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative nitrene transfer from azides to alkynes via Ti(ii)/Ti(iv) redox catalysis: formal [2+2+1] synthesis of pyrroles.
    Pearce AJ; See XY; Tonks IA
    Chem Commun (Camb); 2018 Jun; 54(50):6891-6894. PubMed ID: 29796510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences between the elimination of early and late transition metals: DFT mechanistic insights into the titanium-catalyzed synthesis of pyrroles from alkynes and diazenes.
    Guo J; Deng X; Song C; Lu Y; Qu S; Dang Y; Wang ZX
    Chem Sci; 2017 Mar; 8(3):2413-2425. PubMed ID: 28451348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition Metal-Catalyzed Tandem Reactions of Ynamides for Divergent N-Heterocycle Synthesis.
    Hong FL; Ye LW
    Acc Chem Res; 2020 Sep; 53(9):2003-2019. PubMed ID: 32869969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enabling Nucleophilic Reactivity in High-Spin Fe(II) Imido Complexes: From Elementary Steps to Cooperative Catalysis.
    Gao Y; Smith JM
    Acc Chem Res; 2023 Dec; 56(23):3392-3403. PubMed ID: 37955993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nickel-Catalyzed Radical Mechanisms: Informing Cross-Coupling for Synthesizing Non-Canonical Biomolecules.
    Dawson GA; Spielvogel EH; Diao T
    Acc Chem Res; 2023 Dec; 56(24):3640-3653. PubMed ID: 38033206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N,O-Chelating Four-Membered Metallacyclic Titanium(IV) Complexes for Atom-Economic Catalytic Reactions.
    Ryken SA; Schafer LL
    Acc Chem Res; 2015 Sep; 48(9):2576-86. PubMed ID: 26247696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition Metal-Catalyzed Regioselective Direct C-H Amidation: Interplay between Inner- and Outer-Sphere Pathways for Nitrene Cross-Coupling Reactions.
    Du B; Chan CM; Au CM; Yu WY
    Acc Chem Res; 2022 Aug; 55(15):2123-2137. PubMed ID: 35853135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 62.