These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 34420331)

  • 1. Phonon Screening of Excitons in Semiconductors: Halide Perovskites and Beyond.
    Filip MR; Haber JB; Neaton JB
    Phys Rev Lett; 2021 Aug; 127(6):067401. PubMed ID: 34420331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phonon screening and dissociation of excitons at finite temperatures from first principles.
    Alvertis AM; Haber JB; Li Z; Coveney CJN; Louie SG; Filip MR; Neaton JB
    Proc Natl Acad Sci U S A; 2024 Jul; 121(30):e2403434121. PubMed ID: 39024110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Polar Phonons in the Photo Excited State of Metal Halide Perovskites.
    Bokdam M; Sander T; Stroppa A; Picozzi S; Sarma DD; Franchini C; Kresse G
    Sci Rep; 2016 Jun; 6():28618. PubMed ID: 27350083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemically Localized Resonant Excitons in Silver-Pnictogen Halide Double Perovskites.
    Biega RI; Filip MR; Leppert L; Neaton JB
    J Phys Chem Lett; 2021 Mar; 12(8):2057-2063. PubMed ID: 33606534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical Mapping of Excitons in Halide Double Perovskites.
    Biega RI; Chen Y; Filip MR; Leppert L
    Nano Lett; 2023 Sep; 23(17):8155-8161. PubMed ID: 37656044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exciton-Phonon Interaction and Relaxation Times from First Principles.
    Chen HY; Sangalli D; Bernardi M
    Phys Rev Lett; 2020 Sep; 125(10):107401. PubMed ID: 32955294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phonon-driven intra-exciton Rabi oscillations in CsPbBr
    Nguyen XT; Winte K; Timmer D; Rakita Y; Ceratti DR; Aharon S; Ramzan MS; Cocchi C; Lorke M; Jahnke F; Cahen D; Lienau C; De Sio A
    Nat Commun; 2023 Feb; 14(1):1047. PubMed ID: 36828818
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Zhang XW; Cao T
    J Phys Condens Matter; 2022 Apr; 34(26):. PubMed ID: 35405669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening of Excitons by Organic Cations in Quasi-Two-Dimensional Organic-Inorganic Lead-Halide Perovskites.
    Filip MR; Qiu DY; Del Ben M; Neaton JB
    Nano Lett; 2022 Jun; 22(12):4870-4878. PubMed ID: 35679538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dielectric Screening and Charge-Transfer in 2D Lead-Halide Perovskites for Reduced Exciton Binding Energies.
    Forde A; Tretiak S; Neukirch AJ
    Nano Lett; 2023 Dec; 23(24):11586-11592. PubMed ID: 38065566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polaronic Mass Enhancement and Polaronic Excitons in Metal Halide Perovskites.
    Baranowski M; Nowok A; Galkowski K; Dyksik M; Surrente A; Maude D; Zacharias M; Volonakis G; Stranks SD; Even J; Maczka M; Nicholas R; Plochocka P
    ACS Energy Lett; 2024 Jun; 9(6):2696-2702. PubMed ID: 38903402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable Interlayer Delocalization of Excitons in Layered Organic-Inorganic Halide Perovskites.
    Chen Y; Filip MR
    J Phys Chem Lett; 2023 Nov; 14(47):10634-10641. PubMed ID: 37983171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring Electron-Phonon Interactions in Lead Halide Perovskites Using Time-Resolved THz Spectroscopy.
    Zhao D; Hu H; Haselsberger R; Marcus RA; Michel-Beyerle ME; Lam YM; Zhu JX; La-O-Vorakiat C; Beard MC; Chia EEM
    ACS Nano; 2019 Aug; 13(8):8826-8835. PubMed ID: 31348643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infrared Dielectric Screening Determines the Low Exciton Binding Energy of Metal-Halide Perovskites.
    Umari P; Mosconi E; De Angelis F
    J Phys Chem Lett; 2018 Feb; 9(3):620-627. PubMed ID: 29336156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitons in metal-halide perovskites from first-principles many-body perturbation theory.
    Leppert L
    J Chem Phys; 2024 Feb; 160(5):. PubMed ID: 38341699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrons, Excitons, and Phonons in Two-Dimensional Hybrid Perovskites: Connecting Structural, Optical, and Electronic Properties.
    Straus DB; Kagan CR
    J Phys Chem Lett; 2018 Mar; 9(6):1434-1447. PubMed ID: 29481089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamical correction to the Bethe-Salpeter equation beyond the plasmon-pole approximation.
    Loos PF; Blase X
    J Chem Phys; 2020 Sep; 153(11):114120. PubMed ID: 32962392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theory of Excitons in Atomically Thin Semiconductors: Tight-Binding Approach.
    Bieniek M; Sadecka K; Szulakowska L; Hawrylak P
    Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excitonic Polarons and Self-Trapped Excitons from First-Principles Exciton-Phonon Couplings.
    Dai Z; Lian C; Lafuente-Bartolome J; Giustino F
    Phys Rev Lett; 2024 Jan; 132(3):036902. PubMed ID: 38307080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscopic Picture of Electron-Phonon Interaction in Two-Dimensional Halide Perovskites.
    Feldstein D; Perea-Causín R; Wang S; Dyksik M; Watanabe K; Taniguchi T; Plochocka P; Malic E
    J Phys Chem Lett; 2020 Dec; 11(23):9975-9982. PubMed ID: 33180499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.