These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 34420348)

  • 1. Toughening and Crack Healing Mechanisms in Nanotwinned Diamond Composites with Various Polytypes.
    Zeng Y; Zhang Q; Wang Y; Jiang J; Xing H; Li X
    Phys Rev Lett; 2021 Aug; 127(6):066101. PubMed ID: 34420348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchically structured diamond composite with exceptional toughness.
    Yue Y; Gao Y; Hu W; Xu B; Wang J; Zhang X; Zhang Q; Wang Y; Ge B; Yang Z; Li Z; Ying P; Liu X; Yu D; Wei B; Wang Z; Zhou XF; Guo L; Tian Y
    Nature; 2020 Jun; 582(7812):370-374. PubMed ID: 32555490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-healing of fractured diamond.
    Qiu K; Hou J; Chen S; Li X; Yue Y; Xu B; Hu Q; Liu L; Yang Z; Nie A; Gao Y; Jin T; Wang J; Li Y; Wang Y; Tian Y; Guo L
    Nat Mater; 2023 Nov; 22(11):1317-1323. PubMed ID: 37735525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fracture modes and hybrid toughening mechanisms in oscillated/twisted plywood structure.
    Song Z; Ni Y; Cai S
    Acta Biomater; 2019 Jun; 91():284-293. PubMed ID: 31028909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneous Diamond-cBN Composites with Superb Toughness and Hardness.
    Li B; Ying P; Gao Y; Hu W; Wang L; Zhang Y; Zhao Z; Yu D; He J; Chen J; Xu B; Tian Y
    Nano Lett; 2022 Jun; 22(12):4979-4984. PubMed ID: 35639704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of nanoscale twin boundaries on fracture toughness in nanocrystalline Ni.
    Zhou H; Qu S
    Nanotechnology; 2010 Jan; 21(3):035706. PubMed ID: 19966392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Higher Strength and Ductility than Diamond: Nanotwinned Diamond/Cubic Boron Nitride Multilayer.
    Yang B; Peng X; Huang C; Yin D; Xiang H; Fu T
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42804-42811. PubMed ID: 30421601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanotwinned diamond with unprecedented hardness and stability.
    Huang Q; Yu D; Xu B; Hu W; Ma Y; Wang Y; Zhao Z; Wen B; He J; Liu Z; Tian Y
    Nature; 2014 Jun; 510(7504):250-3. PubMed ID: 24919919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dislocation-Governed Plastic Deformation and Fracture Toughness of Nanotwinned Magnesium.
    Zhou L; Guo YF
    Materials (Basel); 2015 Aug; 8(8):5250-5264. PubMed ID: 28793502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulation of phonon thermal transport in nanotwinned diamond with a new optimized Tersoff potential.
    Shi L; Ma X; Li M; Zhong Y; Yang L; Yin W; He X
    Phys Chem Chem Phys; 2021 Apr; 23(14):8336-8343. PubMed ID: 33875998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dislocation behaviors in nanotwinned diamond.
    Xiao J; Yang H; Wu X; Younus F; Li P; Wen B; Zhang X; Wang Y; Tian Y
    Sci Adv; 2018 Sep; 4(9):eaat8195. PubMed ID: 30255147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toughening materials: enhancing resistance to fracture.
    Ritchie RO
    Philos Trans A Math Phys Eng Sci; 2021 Aug; 379(2203):20200437. PubMed ID: 34148425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detwinning Mechanism for Nanotwinned Cubic Boron Nitride with Unprecedented Strength: A First-Principles Study.
    Yang B; Peng X; Sun S; Huang C; Yin D; Chen X; Fu T
    Nanomaterials (Basel); 2019 Aug; 9(8):. PubMed ID: 31382585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of the Fracture Behavior of Tetragonal Zirconia Polycrystal with a Modified Phase Field Model.
    Zhu J; Luo J; Sun Y
    Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33027967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From brittle to ductile fracture of bone.
    Peterlik H; Roschger P; Klaushofer K; Fratzl P
    Nat Mater; 2006 Jan; 5(1):52-5. PubMed ID: 16341218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Diamond on Microstructure, Fracture Toughness, and Tribological Properties of TiO
    Liu B; Zhuge Z; Zhao S; Zou Y; Tong K; Sun L; Wang X; Liang Z; Li B; Jin T; Chen J; Zhao Z
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. About the Role of Interfaces on the Fatigue Crack Propagation in Laminated Metallic Composites.
    Pohl PM; Kümmel F; Schunk C; Serrano-Munoz I; Markötter H; Göken M; Höppel HW
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34069283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toughening Ceramic-Based Composites by Homogenizing the Lattice Strain at Phase Boundaries.
    Jiang W; Lu H; Chen J; Luo L; Liu X; Wang H; Song X
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):19604-19615. PubMed ID: 37022998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toughening mechanisms in iron-containing hydroxyapatite/titanium composites.
    Chang Q; Chen DL; Ru HQ; Yue XY; Yu L; Zhang CP
    Biomaterials; 2010 Mar; 31(7):1493-501. PubMed ID: 19954836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanotwin-governed toughening mechanism in hierarchically structured biological materials.
    Shin YA; Yin S; Li X; Lee S; Moon S; Jeong J; Kwon M; Yoo SJ; Kim YM; Zhang T; Gao H; Oh SH
    Nat Commun; 2016 Feb; 7():10772. PubMed ID: 26883846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.