These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 34420363)
1. Supplemental Fumigant Placement Improves Root Knot and Fusarium Wilt Management for Tomatoes Produced on a Raised-Bed Plasticulture System in Florida's Myakka Fine Sand. Land CJ; Vallad GE; Desaeger J; Van Santen E; Noling J; Lawrence K Plant Dis; 2022 Jan; 106(1):73-78. PubMed ID: 34420363 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of Allyl Isothiocyanate as a Soil Fumigant for Tomato ( Yu J; Vallad GE; Boyd NS Plant Dis; 2019 Nov; 103(11):2764-2770. PubMed ID: 31490090 [TBL] [Abstract][Full Text] [Related]
4. Root-knot nematode damage to a cucurbit double crop is increased by chloropicrin fumigation on the previous tomato crop. Desaeger JA; Bui HX Pest Manag Sci; 2022 Oct; 78(10):4072-4082. PubMed ID: 35674449 [TBL] [Abstract][Full Text] [Related]
5. Methyl Bromide Alternatives for Control of Root-knot Nematode ( Desaeger J; Dickson DW; Locascio SJ J Nematol; 2017 Jun; 49(2):140-149. PubMed ID: 28706313 [TBL] [Abstract][Full Text] [Related]
6. Biological impact of divergent land management practices on tomato crop health. Chellemi DO; Wu T; Graham JH; Church G Phytopathology; 2012 Jun; 102(6):597-608. PubMed ID: 22352308 [TBL] [Abstract][Full Text] [Related]
7. Biological control of wilt disease complex on tomato crop caused by Meloidogyne javanica and Fusarium oxysporum f.sp. lycopersici by Verticillium leptobactrum. Hajji-Hedfi L; Regaieg H; Larayedh A; Chihani N; Horrigue-Raouani N Environ Sci Pollut Res Int; 2018 Jul; 25(19):18297-18302. PubMed ID: 28939938 [TBL] [Abstract][Full Text] [Related]
8. Pest control with drip-applied dimethyl disulfide and chloropicrin in plastic-mulched tomato (Solanum lycopersicum L.). Yu J; Sharpe SM; Vallad GE; Boyd NS Pest Manag Sci; 2020 Apr; 76(4):1569-1577. PubMed ID: 31713980 [TBL] [Abstract][Full Text] [Related]
9. Tomato tolerance and pest control following fumigation with different ratios of dimethyl disulfide and chloropicrin. Yu J; Land CJ; Vallad GE; Boyd NS Pest Manag Sci; 2019 May; 75(5):1416-1424. PubMed ID: 30417562 [TBL] [Abstract][Full Text] [Related]
10. Rate response of 1,3-dichloropropene for nematode control in spring squash in deep sand soils. Riegel C; Dickson DW; Peterson LG; Nance JL J Nematol; 2000 Dec; 32(4S):524-30. PubMed ID: 19271005 [TBL] [Abstract][Full Text] [Related]
11. Effect of application timing and method on efficacy and phytotoxicity of 1,3-D, chloropicrin and metam-sodium combinations in squash plasticulture. Desaeger JA; Seebold KW; Csinos AS Pest Manag Sci; 2008 Mar; 64(3):230-8. PubMed ID: 18181144 [TBL] [Abstract][Full Text] [Related]
12. Genetic Diversity and Identification of Wilt and Root Rot Pathogens of Tomato in China. Ye Q; Wang R; Ruan M; Yao Z; Cheng Y; Wan H; Li Z; Yang Y; Zhou G Plant Dis; 2020 Jun; 104(6):1715-1724. PubMed ID: 32293997 [TBL] [Abstract][Full Text] [Related]
13. Adaptation of soil solarization to the integrated management of soilborne pests of tomato under humid conditions. Chellemi DO; Olson SM; Mitchell DJ; Secker I; McSorley R Phytopathology; 1997 Mar; 87(3):250-8. PubMed ID: 18945167 [TBL] [Abstract][Full Text] [Related]
14. Impact of repeated fumigant applications on soil properties, crop yield, and microbial communities in a plastic-mulched tomato production system. Castellano-Hinojosa A; Karlsen-Ayala E; Boyd NS; Strauss SL Sci Total Environ; 2024 Apr; 919():170659. PubMed ID: 38325480 [TBL] [Abstract][Full Text] [Related]
15. Emissions from soil fumigation in two raised bed production systems tarped with low permeability films. Qin R; Gao S; Thomas JE; Dickson DW; Ajwa H; Wang D Chemosphere; 2013 Oct; 93(7):1379-85. PubMed ID: 23899923 [TBL] [Abstract][Full Text] [Related]
16. Chemical Alternatives to Methyl Bromide in Spanish Strawberry Nurseries. Cal A; Martinez-TreceƱo A; Lopez-Aranda JM; Melgarejo P Plant Dis; 2004 Feb; 88(2):210-214. PubMed ID: 30812430 [TBL] [Abstract][Full Text] [Related]
17. The effect of transitional organic production practices on soilborne pests of tomato in a simulated microplot study. Chellemi DO; Rosskopf EN; Kokalis-Burelle N Phytopathology; 2013 Aug; 103(8):792-801. PubMed ID: 23837543 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of new chemical and biological nematicides for managing Meloidogyne javanica in tomato production and associated double-crops in Florida. Desaeger JA; Watson TT Pest Manag Sci; 2019 Dec; 75(12):3363-3370. PubMed ID: 31074102 [TBL] [Abstract][Full Text] [Related]
19. Potentiality of different isolates of wilt fungus Fusarium oxysporum collected from rhizosphere of tomato against root-knot nematode Meloidogyne incognita. Jain A; Mohan J; Singh M; Goswami BK J Environ Sci Health B; 2008 Nov; 43(8):686-91. PubMed ID: 18941992 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of Application Methods of Metam Sodium for Management of Fusarium Crown and Root Rot in Tomato in Southwest Florida. McGovern RJ; Vavrina CS; Noling JW; Datnoff LA; Yonce HD Plant Dis; 1998 Aug; 82(8):919-923. PubMed ID: 30856922 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]