These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2583 related articles for article (PubMed ID: 34420993)
1. The expression of hACE2 receptor protein and its involvement in SARS-CoV-2 entry, pathogenesis, and its application as potential therapeutic target. Al-Zaidan L; Mestiri S; Raza A; Merhi M; Inchakalody VP; Fernandes Q; Taib N; Uddin S; Dermime S Tumour Biol; 2021; 43(1):177-196. PubMed ID: 34420993 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of S-protein RBD and hACE2 Interaction for Control of SARSCoV- 2 Infection (COVID-19). Nayak SK Mini Rev Med Chem; 2021; 21(6):689-703. PubMed ID: 33208074 [TBL] [Abstract][Full Text] [Related]
3. Angiotensin-Converting Enzyme 2 (ACE2) in the Pathogenesis of ARDS in COVID-19. Kuba K; Yamaguchi T; Penninger JM Front Immunol; 2021; 12():732690. PubMed ID: 35003058 [TBL] [Abstract][Full Text] [Related]
4. Geraniin Inhibits the Entry of SARS-CoV-2 by Blocking the Interaction between Spike Protein RBD and Human ACE2 Receptor. Kim YS; Chung HS; Noh SG; Lee B; Chung HY; Choi JG Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445310 [TBL] [Abstract][Full Text] [Related]
5. Analysis of the Role of N-Linked Glycosylation in Cell Surface Expression, Function, and Binding Properties of SARS-CoV-2 Receptor ACE2. Rowland R; Brandariz-Nuñez A Microbiol Spectr; 2021 Oct; 9(2):e0119921. PubMed ID: 34494876 [TBL] [Abstract][Full Text] [Related]
6. In silico investigation of critical binding pattern in SARS-CoV-2 spike protein with angiotensin-converting enzyme 2. Jafary F; Jafari S; Ganjalikhany MR Sci Rep; 2021 Mar; 11(1):6927. PubMed ID: 33767306 [TBL] [Abstract][Full Text] [Related]
7. Optimized Pseudotyping Conditions for the SARS-COV-2 Spike Glycoprotein. Johnson MC; Lyddon TD; Suarez R; Salcedo B; LePique M; Graham M; Ricana C; Robinson C; Ritter DG J Virol; 2020 Oct; 94(21):. PubMed ID: 32788194 [TBL] [Abstract][Full Text] [Related]
8. Contribution of Syndecans to the Cellular Entry of SARS-CoV-2. Hudák A; Letoha A; Szilák L; Letoha T Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34069441 [TBL] [Abstract][Full Text] [Related]
9. In silico studies on the comparative characterization of the interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor homologs and human TLRs. Choudhury A; Mukherjee S J Med Virol; 2020 Oct; 92(10):2105-2113. PubMed ID: 32383269 [TBL] [Abstract][Full Text] [Related]
11. Contributions of human ACE2 and TMPRSS2 in determining host-pathogen interaction of COVID-19. Senapati S; Banerjee P; Bhagavatula S; Kushwaha PP; Kumar S J Genet; 2021; 100(1):. PubMed ID: 33707363 [TBL] [Abstract][Full Text] [Related]
12. HDL-scavenger receptor B type 1 facilitates SARS-CoV-2 entry. Wei C; Wan L; Yan Q; Wang X; Zhang J; Yang X; Zhang Y; Fan C; Li D; Deng Y; Sun J; Gong J; Yang X; Wang Y; Wang X; Li J; Yang H; Li H; Zhang Z; Wang R; Du P; Zong Y; Yin F; Zhang W; Wang N; Peng Y; Lin H; Feng J; Qin C; Chen W; Gao Q; Zhang R; Cao Y; Zhong H Nat Metab; 2020 Dec; 2(12):1391-1400. PubMed ID: 33244168 [TBL] [Abstract][Full Text] [Related]
13. Hot spot profiles of SARS-CoV-2 and human ACE2 receptor protein protein interaction obtained by density functional tight binding fragment molecular orbital method. Lim H; Baek A; Kim J; Kim MS; Liu J; Nam KY; Yoon J; No KT Sci Rep; 2020 Oct; 10(1):16862. PubMed ID: 33033344 [TBL] [Abstract][Full Text] [Related]
14. SARS-CoV-2 Cellular Entry Is Independent of the ACE2 Cytoplasmic Domain Signaling. Karthika T; Joseph J; Das VRA; Nair N; Charulekha P; Roji MD; Raj VS Cells; 2021 Jul; 10(7):. PubMed ID: 34359983 [TBL] [Abstract][Full Text] [Related]
15. Dynamics of SARS-CoV-2 Spike Proteins in Cell Entry: Control Elements in the Amino-Terminal Domains. Qing E; Kicmal T; Kumar B; Hawkins GM; Timm E; Perlman S; Gallagher T mBio; 2021 Aug; 12(4):e0159021. PubMed ID: 34340537 [TBL] [Abstract][Full Text] [Related]
16. SARS-CoV-2, ACE2 expression, and systemic organ invasion. Ashraf UM; Abokor AA; Edwards JM; Waigi EW; Royfman RS; Hasan SA; Smedlund KB; Hardy AMG; Chakravarti R; Koch LG Physiol Genomics; 2021 Feb; 53(2):51-60. PubMed ID: 33275540 [TBL] [Abstract][Full Text] [Related]
17. Q493K and Q498H substitutions in Spike promote adaptation of SARS-CoV-2 in mice. Huang K; Zhang Y; Hui X; Zhao Y; Gong W; Wang T; Zhang S; Yang Y; Deng F; Zhang Q; Chen X; Yang Y; Sun X; Chen H; Tao YJ; Zou Z; Jin M EBioMedicine; 2021 May; 67():103381. PubMed ID: 33993052 [TBL] [Abstract][Full Text] [Related]
18. Targeting the viral-entry facilitators of SARS-CoV-2 as a therapeutic strategy in COVID-19. Muralidar S; Gopal G; Visaga Ambi S J Med Virol; 2021 Sep; 93(9):5260-5276. PubMed ID: 33851732 [TBL] [Abstract][Full Text] [Related]
19. Potential pathogenesis of severe acute respiratory syndrome coronavirus 2. Wu T; Zhang H; Hu E; Ma J Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2020 May; 45(5):591-597. PubMed ID: 32879112 [TBL] [Abstract][Full Text] [Related]