These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 34421331)

  • 1. Using systems thinking and causal loop diagrams to identify cascading climate change impacts on bioenergy supply systems.
    Groundstroem F; Juhola S
    Mitig Adapt Strateg Glob Chang; 2021; 26(7):29. PubMed ID: 34421331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatially explicit LCA analysis of biodiversity losses due to different bioenergy policies in the European Union.
    Di Fulvio F; Forsell N; Korosuo A; Obersteiner M; Hellweg S
    Sci Total Environ; 2019 Feb; 651(Pt 1):1505-1516. PubMed ID: 30360280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elaborating a systems methodology for cascading climate change impacts and implications.
    Cradock-Henry NA; Connolly J; Blackett P; Lawrence J
    MethodsX; 2020; 7():100893. PubMed ID: 32368509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Waste wood as bioenergy feedstock. Climate change impacts and related emission uncertainties from waste wood based energy systems in the UK.
    Röder M; Thornley P
    Waste Manag; 2018 Apr; 74():241-252. PubMed ID: 29203077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A game theoretic approach to contract-based enviro-economic coordination of wood pellet supply chains for bioenergy production.
    Vazifeh Z; Mafakheri F; An C; Bensebaa F
    Sustain Energy Res; 2023; 10(1):17. PubMed ID: 38037615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How can land-use modelling tools inform bioenergy policies?
    Davis SC; House JI; Diaz-Chavez RA; Molnar A; Valin H; Delucia EH
    Interface Focus; 2011 Apr; 1(2):212-23. PubMed ID: 22482028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opportunities and Challenges in the Design and Analysis of Biomass Supply Chains.
    Lautala PT; Hilliard MR; Webb E; Busch I; Richard Hess J; Roni MS; Hilbert J; Handler RM; Bittencourt R; Valente A; Laitinen T
    Environ Manage; 2015 Dec; 56(6):1397-415. PubMed ID: 26122631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Consensus, uncertainties and challenges for perennial bioenergy crops and land use.
    Whitaker J; Field JL; Bernacchi CJ; Cerri CEP; Ceulemans R; Davies CA; DeLucia EH; Donnison IS; McCalmont JP; Paustian K; Rowe RL; Smith P; Thornley P; McNamara NP
    Glob Change Biol Bioenergy; 2018 Mar; 10(3):150-164. PubMed ID: 29497458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climate change impacts on the energy system: a review of trends and gaps.
    Cronin J; Anandarajah G; Dessens O
    Clim Change; 2018; 151(2):79-93. PubMed ID: 30930505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The incorporated environmental policies and regulations into bioenergy supply chain management: A literature review.
    Mina D; Hadi S; Jalal A
    Sci Total Environ; 2022 May; 820():153202. PubMed ID: 35063527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cascading costs of snow cover reduction trend in northern hemisphere.
    Liu S; Qi J; Liang S; Wang X; Wu X; Xiao C
    Sci Total Environ; 2022 Feb; 806(Pt 4):150970. PubMed ID: 34656587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioenergy cropland expansion may offset positive effects of climate change mitigation for global vertebrate diversity.
    Hof C; Voskamp A; Biber MF; Böhning-Gaese K; Engelhardt EK; Niamir A; Willis SG; Hickler T
    Proc Natl Acad Sci U S A; 2018 Dec; 115(52):13294-13299. PubMed ID: 30530689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The climate impacts of bioenergy systems depend on market and regulatory policy contexts.
    Lemoine DM; Plevin RJ; Cohn AS; Jones AD; Brandt AR; Vergara SE; Kammen DM
    Environ Sci Technol; 2010 Oct; 44(19):7347-50. PubMed ID: 20873876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The potential impacts of biomass feedstock production on water resource availability.
    Stone KC; Hunt PG; Cantrell KB; Ro KS
    Bioresour Technol; 2010 Mar; 101(6):2014-25. PubMed ID: 19939667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LCA-based optimization of wood utilization under special consideration of a cascading use of wood.
    Höglmeier K; Steubing B; Weber-Blaschke G; Richter K
    J Environ Manage; 2015 Apr; 152():158-70. PubMed ID: 25660355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sentiments toward use of forest biomass for heat and power in canadian headlines.
    MacDonald H; Hope E; de Boer K; McKenney DW
    Heliyon; 2023 Feb; 9(2):e13254. PubMed ID: 36761824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impacts of climate change on the livestock food supply chain; a review of the evidence.
    Godde CM; Mason-D'Croz D; Mayberry DE; Thornton PK; Herrero M
    Glob Food Sec; 2021 Mar; 28():100488. PubMed ID: 33738188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring the dynamic vulnerability of an Arctic subsistence food system to climate change: The case of Ulukhaktok, NT.
    Naylor AW; Ford JD; Pearce T; Fawcett D; Clark D; van Alstine J
    PLoS One; 2021; 16(9):e0258048. PubMed ID: 34587225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Landscape patterns of bioenergy in a changing climate: implications for crop allocation and land-use competition.
    Graves RA; Pearson SM; Turner MG
    Ecol Appl; 2016 Mar; 26(2):515-29. PubMed ID: 27209792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooling aerosols and changes in albedo counteract warming from CO
    Arvesen A; Cherubini F; Del Alamo Serrano G; Astrup R; Becidan M; Belbo H; Goile F; Grytli T; Guest G; Lausselet C; Rørstad PK; Rydså L; Seljeskog M; Skreiberg Ø; Vezhapparambu S; Strømman AH
    Sci Rep; 2018 Feb; 8(1):3299. PubMed ID: 29459753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.