These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 34421565)
1. Identifying Individuals With Mild Cognitive Impairment Using Working Memory-Induced Intra-Subject Variability of Resting-State EEGs. Trinh TT; Tsai CF; Hsiao YT; Lee CY; Wu CT; Liu YH Front Comput Neurosci; 2021; 15():700467. PubMed ID: 34421565 [TBL] [Abstract][Full Text] [Related]
2. Electroencephalography-based classification of Alzheimer's disease spectrum during computer-based cognitive testing. Kim SK; Kim H; Kim SH; Kim JB; Kim L Sci Rep; 2024 Mar; 14(1):5252. PubMed ID: 38438453 [TBL] [Abstract][Full Text] [Related]
3. Resting state EEG biomarkers of cognitive decline associated with Alzheimer's disease and mild cognitive impairment. Meghdadi AH; Stevanović Karić M; McConnell M; Rupp G; Richard C; Hamilton J; Salat D; Berka C PLoS One; 2021; 16(2):e0244180. PubMed ID: 33544703 [TBL] [Abstract][Full Text] [Related]
4. A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia. Ieracitano C; Mammone N; Hussain A; Morabito FC Neural Netw; 2020 Mar; 123():176-190. PubMed ID: 31884180 [TBL] [Abstract][Full Text] [Related]
5. Diagnosis of Mild Cognitive Impairment Using Cognitive Tasks: A Functional Near-Infrared Spectroscopy Study. Yoo SH; Woo SW; Shin MJ; Yoon JA; Shin YI; Hong KS Curr Alzheimer Res; 2020; 17(13):1145-1160. PubMed ID: 33583382 [TBL] [Abstract][Full Text] [Related]
6. Sleep EEG-Based Approach to Detect Mild Cognitive Impairment. Geng D; Wang C; Fu Z; Zhang Y; Yang K; An H Front Aging Neurosci; 2022; 14():865558. PubMed ID: 35493944 [TBL] [Abstract][Full Text] [Related]
7. Radiomics: a novel feature extraction method for brain neuron degeneration disease using Li Y; Jiang J; Lu J; Jiang J; Zhang H; Zuo C Ther Adv Neurol Disord; 2019; 12():1756286419838682. PubMed ID: 30956687 [TBL] [Abstract][Full Text] [Related]
8. Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer's disease. Khazaee A; Ebrahimzadeh A; Babajani-Feremi A Brain Imaging Behav; 2016 Sep; 10(3):799-817. PubMed ID: 26363784 [TBL] [Abstract][Full Text] [Related]
9. Selecting EEG channels and features using multi-objective optimization for accurate MCI detection: validation using leave-one-subject-out strategy. Aljalal M; Aldosari SA; Molinas M; Alturki FA Sci Rep; 2024 May; 14(1):12483. PubMed ID: 38816409 [TBL] [Abstract][Full Text] [Related]
10. Prediction and Classification of Alzheimer's Disease Based on Combined Features From Apolipoprotein-E Genotype, Cerebrospinal Fluid, MR, and FDG-PET Imaging Biomarkers. Gupta Y; Lama RK; Kwon GR; Front Comput Neurosci; 2019; 13():72. PubMed ID: 31680923 [TBL] [Abstract][Full Text] [Related]
11. Memorization Test and Resting State EEG Components in Mild and Subjective Cognitive Impairment. Mazzon G; De Dea F; Cattaruzza T; Manganotti P; Monti F; Accardo A Curr Alzheimer Res; 2018; 15(9):809-819. PubMed ID: 29701152 [TBL] [Abstract][Full Text] [Related]
12. Spectral analysis and Bi-LSTM deep network-based approach in detection of mild cognitive impairment from electroencephalography signals. Said A; Göker H Cogn Neurodyn; 2024 Apr; 18(2):597-614. PubMed ID: 38699612 [TBL] [Abstract][Full Text] [Related]
13. Predicting MCI to AD Conversation Using Integrated sMRI and rs-fMRI: Machine Learning and Graph Theory Approach. Zhang T; Liao Q; Zhang D; Zhang C; Yan J; Ngetich R; Zhang J; Jin Z; Li L Front Aging Neurosci; 2021; 13():688926. PubMed ID: 34421570 [TBL] [Abstract][Full Text] [Related]
14. Beta to theta power ratio in EEG periodic components as a potential biomarker in mild cognitive impairment and Alzheimer's dementia. Azami H; Zrenner C; Brooks H; Zomorrodi R; Blumberger DM; Fischer CE; Flint A; Herrmann N; Kumar S; Lanctôt K; Mah L; Mulsant BH; Pollock BG; Rajji TK; Alzheimers Res Ther; 2023 Aug; 15(1):133. PubMed ID: 37550778 [TBL] [Abstract][Full Text] [Related]
15. Resting-state electroencephalographic characteristics related to mild cognitive impairments. Kim SE; Shin C; Yim J; Seo K; Ryu H; Choi H; Park J; Min BK Front Psychiatry; 2023; 14():1231861. PubMed ID: 37779609 [TBL] [Abstract][Full Text] [Related]
16. A holo-spectral EEG analysis provides an early detection of cognitive decline and predicts the progression to Alzheimer's disease. Chu KT; Lei WC; Wu MH; Fuh JL; Wang SJ; French IT; Chang WS; Chang CF; Huang NE; Liang WK; Juan CH Front Aging Neurosci; 2023; 15():1195424. PubMed ID: 37674782 [TBL] [Abstract][Full Text] [Related]
17. Automated Multiclass Classification of Spontaneous EEG Activity in Alzheimer's Disease and Mild Cognitive Impairment. Ruiz-Gómez SJ; Gómez C; Poza J; Gutiérrez-Tobal GC; Tola-Arribas MA; Cano M; Hornero R Entropy (Basel); 2018 Jan; 20(1):. PubMed ID: 33265122 [TBL] [Abstract][Full Text] [Related]
18. PLI-Based Connectivity in Resting-EEG is a Robust and Generalizable Feature for Detecting MCI and AD: A Validation on a Diverse Multisite Clinical Dataset. Trinh TT; Liu YH; Wu CT; Peng WH; Hou CL; Weng CH; Lee CY Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-6. PubMed ID: 38083569 [TBL] [Abstract][Full Text] [Related]
19. Complexity of EEG Dynamics for Early Diagnosis of Alzheimer's Disease Using Permutation Entropy Neuromarker. Şeker M; Özbek Y; Yener G; Özerdem MS Comput Methods Programs Biomed; 2021 Jul; 206():106116. PubMed ID: 33957376 [TBL] [Abstract][Full Text] [Related]
20. Classification of patients with MCI and AD from healthy controls using directed graph measures of resting-state fMRI. Khazaee A; Ebrahimzadeh A; Babajani-Feremi A; Behav Brain Res; 2017 Mar; 322(Pt B):339-350. PubMed ID: 27345822 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]