These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34421567)

  • 1. Dissociable Neural Representations of Adversarially Perturbed Images in Convolutional Neural Networks and the Human Brain.
    Zhang C; Duan XH; Wang LY; Li YL; Yan B; Hu GE; Zhang RY; Tong L
    Front Neuroinform; 2021; 15():677925. PubMed ID: 34421567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Representations of regular and irregular shapes by deep Convolutional Neural Networks, monkey inferotemporal neurons and human judgments.
    Kalfas I; Vinken K; Vogels R
    PLoS Comput Biol; 2018 Oct; 14(10):e1006557. PubMed ID: 30365485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural representations of the perception of handwritten digits and visual objects from a convolutional neural network compared to humans.
    Lee J; Jung M; Lustig N; Lee JH
    Hum Brain Mapp; 2023 Apr; 44(5):2018-2038. PubMed ID: 36637109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding transformation tolerant visual object representations in the human brain and convolutional neural networks.
    Xu Y; Vaziri-Pashkam M
    Neuroimage; 2022 Nov; 263():119635. PubMed ID: 36116617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semantics-Guided Hierarchical Feature Encoding Generative Adversarial Network for Visual Image Reconstruction From Brain Activity.
    Meng L; Yang C
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1267-1283. PubMed ID: 38498745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Limits to visual representational correspondence between convolutional neural networks and the human brain.
    Xu Y; Vaziri-Pashkam M
    Nat Commun; 2021 Apr; 12(1):2065. PubMed ID: 33824315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A self-supervised deep neural network for image completion resembles early visual cortex fMRI activity patterns for occluded scenes.
    Svanera M; Morgan AT; Petro LS; Muckli L
    J Vis; 2021 Jul; 21(7):5. PubMed ID: 34259828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From photos to sketches - how humans and deep neural networks process objects across different levels of visual abstraction.
    Singer JJD; Seeliger K; Kietzmann TC; Hebart MN
    J Vis; 2022 Feb; 22(2):4. PubMed ID: 35129578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-resolved correspondences between deep neural network layers and EEG measurements in object processing.
    Kong NCL; Kaneshiro B; Yamins DLK; Norcia AM
    Vision Res; 2020 Jul; 172():27-45. PubMed ID: 32388211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Examining the Coding Strength of Object Identity and Nonidentity Features in Human Occipito-Temporal Cortex and Convolutional Neural Networks.
    Xu Y; Vaziri-Pashkam M
    J Neurosci; 2021 May; 41(19):4234-4252. PubMed ID: 33789916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A failure to learn object shape geometry: Implications for convolutional neural networks as plausible models of biological vision.
    Heinke D; Wachman P; van Zoest W; Leek EC
    Vision Res; 2021 Dec; 189():81-92. PubMed ID: 34634753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis based on neural representation of natural object surfaces to elucidate the mechanisms of a trained AlexNet model.
    Wagatsuma N; Hidaka A; Tamura H
    Front Comput Neurosci; 2022; 16():979258. PubMed ID: 36249483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Convolutional Neural Networks Outperform Feature-Based But Not Categorical Models in Explaining Object Similarity Judgments.
    Jozwik KM; Kriegeskorte N; Storrs KR; Mur M
    Front Psychol; 2017; 8():1726. PubMed ID: 29062291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adversarial attacks and adversarial robustness in computational pathology.
    Ghaffari Laleh N; Truhn D; Veldhuizen GP; Han T; van Treeck M; Buelow RD; Langer R; Dislich B; Boor P; Schulz V; Kather JN
    Nat Commun; 2022 Sep; 13(1):5711. PubMed ID: 36175413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Words as a window: Using word embeddings to explore the learned representations of Convolutional Neural Networks.
    Dharmaretnam D; Foster C; Fyshe A
    Neural Netw; 2021 May; 137():63-74. PubMed ID: 33556802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generative Adversarial Networks for Noise Reduction in Low-Dose CT.
    Wolterink JM; Leiner T; Viergever MA; Isgum I
    IEEE Trans Med Imaging; 2017 Dec; 36(12):2536-2545. PubMed ID: 28574346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep convolutional neural networks for regular texture recognition.
    Liu N; Rogers M; Cui H; Liu W; Li X; Delmas P
    PeerJ Comput Sci; 2022; 8():e869. PubMed ID: 35494803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linking patterns of infant eye movements to a neural network model of the ventral stream using representational similarity analysis.
    Kiat JE; Luck SJ; Beckner AG; Hayes TR; Pomaranski KI; Henderson JM; Oakes LM
    Dev Sci; 2022 Jan; 25(1):e13155. PubMed ID: 34240787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defense Against Adversarial Attacks by Reconstructing Images.
    Zhang S; Gao H; Rao Q
    IEEE Trans Image Process; 2021; 30():6117-6129. PubMed ID: 34197323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracting Low-Dimensional Psychological Representations from Convolutional Neural Networks.
    Jha A; Peterson JC; Griffiths TL
    Cogn Sci; 2023 Jan; 47(1):e13226. PubMed ID: 36617318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.