These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 34422910)

  • 1. Fibril Surface-Dependent Amyloid Precursors Revealed by Coarse-Grained Molecular Dynamics Simulation.
    Ma YW; Lin TY; Tsai MY
    Front Mol Biosci; 2021; 8():719320. PubMed ID: 34422910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corrigendum: Fibril Surface-Dependent Amyloid Precursors Revealed by Coarse-Grained Molecular Dynamics Simulation.
    Ma YW; Lin TY; Tsai MY
    Front Mol Biosci; 2022; 9():944884. PubMed ID: 35795826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of fiber assembly: treatment of Aβ peptide aggregation with a coarse-grained united-residue force field.
    Rojas A; Liwo A; Browne D; Scheraga HA
    J Mol Biol; 2010 Dec; 404(3):537-52. PubMed ID: 20888834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From Aβ Filament to Fibril: Molecular Mechanism of Surface-Activated Secondary Nucleation from All-Atom MD Simulations.
    Schwierz N; Frost CV; Geissler PL; Zacharias M
    J Phys Chem B; 2017 Feb; 121(4):671-682. PubMed ID: 27992231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational studies of protein aggregation mediated by amyloid: Fibril elongation and secondary nucleation.
    Cao Y; Tang X; Yuan M; Han W
    Prog Mol Biol Transl Sci; 2020; 170():461-504. PubMed ID: 32145951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidating Important Sites and the Mechanism for Amyloid Fibril Formation by Coarse-Grained Molecular Dynamics.
    Rojas A; Maisuradze N; Kachlishvili K; Scheraga HA; Maisuradze GG
    ACS Chem Neurosci; 2017 Jan; 8(1):201-209. PubMed ID: 28095675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Characteristics of Monomeric Aβ42 on Fibril in the Early Stage of Secondary Nucleation Process.
    Noda K; Tachi Y; Okamoto Y
    ACS Chem Neurosci; 2020 Oct; 11(19):2989-2998. PubMed ID: 32794732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of protofibril elongation and association involved in Aβ42 peptide aggregation in Alzheimer's disease.
    Ghosh P; Kumar A; Datta B; Rangachari V
    BMC Bioinformatics; 2010 Oct; 11 Suppl 6(Suppl 6):S24. PubMed ID: 20946608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of Nucleation and Growth of Aβ40 Fibrils from All-Atom and Coarse-Grained Simulations.
    Sasmal S; Schwierz N; Head-Gordon T
    J Phys Chem B; 2016 Dec; 120(47):12088-12097. PubMed ID: 27806205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assembly of amyloid β peptides in the presence of fibril seeds: one-pot coarse-grained molecular dynamics simulations.
    Xu L; Chen Y; Wang X
    J Phys Chem B; 2014 Aug; 118(31):9238-46. PubMed ID: 25050788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations.
    Nguyen P; Derreumaux P
    Acc Chem Res; 2014 Feb; 47(2):603-11. PubMed ID: 24368046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transthyretin Interferes with Aβ Amyloid Formation by Redirecting Oligomeric Nuclei into Non-Amyloid Aggregates.
    Nilsson L; Pamrén A; Islam T; Brännström K; Golchin SA; Pettersson N; Iakovleva I; Sandblad L; Gharibyan AL; Olofsson A
    J Mol Biol; 2018 Aug; 430(17):2722-2733. PubMed ID: 29890120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic perspective on the dock-lock growth mechanism of amyloid fibrils.
    O'Brien EP; Okamoto Y; Straub JE; Brooks BR; Thirumalai D
    J Phys Chem B; 2009 Oct; 113(43):14421-30. PubMed ID: 19813700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of fibril structure and surface hydrophobicity in secondary nucleation of amyloid fibrils.
    Thacker D; Sanagavarapu K; Frohm B; Meisl G; Knowles TPJ; Linse S
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25272-25283. PubMed ID: 33004626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding Amyloid-β Oligomerization at the Molecular Level: The Role of the Fibril Surface.
    Barz B; Strodel B
    Chemistry; 2016 Jun; 22(26):8768-72. PubMed ID: 27135646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secondary Nucleation and the Conservation of Structural Characteristics of Amyloid Fibril Strains.
    Hadi Alijanvand S; Peduzzo A; Buell AK
    Front Mol Biosci; 2021; 8():669994. PubMed ID: 33937341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational stability of fibrillar amyloid-beta oligomers via protofilament pair formation - a systematic computational study.
    Kahler A; Sticht H; Horn AH
    PLoS One; 2013; 8(7):e70521. PubMed ID: 23936224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-monotonic fibril surface occlusion by GFP tags from coarse-grained molecular simulations.
    Shillcock JC; Hastings J; Riguet N; Lashuel HA
    Comput Struct Biotechnol J; 2022; 20():309-321. PubMed ID: 35070162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of Mutant Huntingtin Exon-1 Fragments into Large Complex Fibrillar Structures Involves Nucleated Branching.
    Wagner AS; Politi AZ; Ast A; Bravo-Rodriguez K; Baum K; Buntru A; Strempel NU; Brusendorf L; Hänig C; Boeddrich A; Plassmann S; Klockmeier K; Ramirez-Anguita JM; Sanchez-Garcia E; Wolf J; Wanker EE
    J Mol Biol; 2018 Jun; 430(12):1725-1744. PubMed ID: 29601786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence dependent aggregation of peptides and fibril formation.
    Hung NB; Le DM; Hoang TX
    J Chem Phys; 2017 Sep; 147(10):105102. PubMed ID: 28915764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.