These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34423224)

  • 1. Role of FeS Catalyst in the Hydromodification of Lignite in a Subcritical Water-CO System.
    Zhao Y; He S; Guo Q; Li G; Wang L; Liu Y; Zhang Y
    ACS Omega; 2021 Aug; 6(32):21160-21168. PubMed ID: 34423224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning Lignite Structure via Hydromodification To Promote the Formation of Coal-Based CNTs: Exploration for the Carbon Source of CNTs.
    Guo Q; Zhao Y; Lei Y; Li G; He Y; Zhang G; Zhang Y; Li K
    ACS Omega; 2023 Jul; 8(29):25938-25950. PubMed ID: 37521664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Iron Component on the Structural Evolution of Carbon Bonds in Hydrochloric Acid-Demineralized Lignite During Pyrolysis.
    Teng Y; Bian X; Fu X; Song Y; Bai X
    ACS Omega; 2023 May; 8(20):17634-17643. PubMed ID: 37251199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular model construction of Danhou lignite and study on adsorption of CH
    Zhu H; Huo Y; He X; Wang W; Fang S; Zhang Y
    Environ Sci Pollut Res Int; 2021 May; 28(20):25368-25381. PubMed ID: 33454865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic effects on cellulose and lignite co-pyrolysis and co-liquefaction.
    Zhao Y; Cao H; Yao C; Li R; Wu Y
    Bioresour Technol; 2020 Mar; 299():122627. PubMed ID: 31881435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction and optimization of macromolecular structure model of Tiebei lignite.
    Jia J; Xiao L; Wang D; Zhao D; Xing Y; Wu Y
    PLoS One; 2023; 18(8):e0289328. PubMed ID: 37549159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Characterization and Molecular Simulation of Baoqing Lignite.
    Zhang D; Li Y; Zi C; Zhang Y; Hu X; Tian G; Zhao W
    ACS Omega; 2021 Apr; 6(15):10281-10287. PubMed ID: 34056182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural characterization and macromolecular structure construction of non-caking coal in Chicheng Mine.
    Jia J; Yang Q; Liu B; Wang D
    Sci Rep; 2023 Oct; 13(1):16931. PubMed ID: 37805538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement Mechanism of Minerals on Lignite-Water Molecule Interactions.
    Teng YY; Han SR; Song YY; Bai X; Song YM
    ACS Omega; 2023 Mar; 8(10):9111-9120. PubMed ID: 36936316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creation and Generation Mechanism of Macromolecular Representation for Dongsheng Coal Vitrinite.
    Wang X; Dong Z; Yu R
    ACS Omega; 2022 Apr; 7(13):11033-11043. PubMed ID: 35415363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient extraction and formation mechanism of fulvic acid from lignite: Experimental and DFT studies.
    Li N; Ma H; Wang G; Ma X; Deng J; Yuan S
    J Environ Manage; 2024 Aug; 365():121650. PubMed ID: 38968881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical Structure Characteristics and Model Construction of Coal with Three Kinds of Coalification Degrees.
    Wang C; Xing Y; Shi K; Wang S; Xia Y; Li J; Gui X
    ACS Omega; 2024 Jan; 9(1):1881-1893. PubMed ID: 38222524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Nanostructure Evolution in Coal Molecules of Different Ranks.
    Meng J; Zhong R; Niu J; Li S; Nie B
    J Nanosci Nanotechnol; 2021 Jan; 21(1):405-421. PubMed ID: 33213640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extraction of Fulvic Acid from Lignite and Characterization of Its Functional Groups.
    Gong G; Xu L; Zhang Y; Liu W; Wang M; Zhao Y; Yuan X; Li Y
    ACS Omega; 2020 Nov; 5(43):27953-27961. PubMed ID: 33163778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the lignite biotransformation capacity of
    Niu X; Zhang J; Wang C; Jia X; Fu J; Suo Y
    Can J Microbiol; 2021 Aug; 67(8):613-621. PubMed ID: 33751915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subtractive-FTIR spectroscopy to characterize organic matter in lignite samples from different depths.
    Gezici O; Demir I; Demircan A; Unlü N; Karaarslan M
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Oct; 96():63-9. PubMed ID: 22652543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on the Hydroconversion Law of Coal-Based Heavy Fractions with Different Catalyst Contents Based on an Improved Separation Method.
    Wang Y; Tian F; Zhu Y; Cui L; Fan X; Du C; Wang F; Zheng H; Yang Y; Li D
    ACS Omega; 2023 Jun; 8(25):22440-22452. PubMed ID: 37396277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of direct yellow brown D3G from aqueous solution using loaded modified low-cost lignite: Performance and mechanism.
    He Q; Ruan P; Miao Z; Wan K; Gao M; Li X; Huang S
    Environ Technol; 2021 Apr; 42(11):1642-1651. PubMed ID: 31587612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fourier Transform Infrared Spectroscopy Evidence of the Nanoscale Structural Jump in Medium-Rank Tectonic Coal.
    Zhang X; Jia T; Zhang H; Ju Y; Zhang Y
    J Nanosci Nanotechnol; 2021 Jan; 21(1):636-645. PubMed ID: 33213664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on the Pretreatment Process and Removal Rules of Sulfur-Containing Compounds for Medium- and Low-Temperature Coal Tar.
    Liu J; Zhu Y; Miao Z; Cui L; Liu J; Fan X; Du C; Dan Y; Teng H; Li D
    ACS Omega; 2021 May; 6(19):12541-12550. PubMed ID: 34056404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.