These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34423306)

  • 1. Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model for Protein Design.
    Cao Y; Das P; Chenthamarakshan V; Chen PY; Melnyk I; Shen Y
    Proc Mach Learn Res; 2021 Jul; 139():1261-1271. PubMed ID: 34423306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De Novo Protein Design for Novel Folds Using Guided Conditional Wasserstein Generative Adversarial Networks.
    Karimi M; Zhu S; Cao Y; Shen Y
    J Chem Inf Model; 2020 Dec; 60(12):5667-5681. PubMed ID: 32945673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TALE: Transformer-based protein function Annotation with joint sequence-Label Embedding.
    Cao Y; Shen Y
    Bioinformatics; 2021 Sep; 37(18):2825-2833. PubMed ID: 33755048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient 3D Molecular Design with an E(3) Invariant Transformer VAE.
    Dollar O; Joshi N; Pfaendtner J; Beck DAC
    J Phys Chem A; 2023 Sep; 127(37):7844-7852. PubMed ID: 37670244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Network-principled deep generative models for designing drug combinations as graph sets.
    Karimi M; Hasanzadeh A; Shen Y
    Bioinformatics; 2020 Jul; 36(Suppl_1):i445-i454. PubMed ID: 32657357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. S-PLM: Structure-aware Protein Language Model via Contrastive Learning between Sequence and Structure.
    Wang D; Pourmirzaei M; Abbas UL; Zeng S; Manshour N; Esmaili F; Poudel B; Jiang Y; Shao Q; Chen J; Xu D
    bioRxiv; 2024 May; ():. PubMed ID: 37609352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probabilistic generative transformer language models for generative design of molecules.
    Wei L; Fu N; Song Y; Wang Q; Hu J
    J Cheminform; 2023 Sep; 15(1):88. PubMed ID: 37749655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. I
    Tu Y; Li L; Su L; Gao S; Yan C; Zha ZJ; Yu Z; Huang Q
    IEEE Trans Image Process; 2022; 31():3565-3577. PubMed ID: 35312620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CProMG: controllable protein-oriented molecule generation with desired binding affinity and drug-like properties.
    Li JN; Yang G; Zhao PC; Wei XX; Shi JY
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i326-i336. PubMed ID: 37387157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generative design of
    Ni B; Kaplan DL; Buehler MJ
    Chem; 2023 Jul; 9(7):1828-1849. PubMed ID: 37614363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GANE: A Generative Adversarial Network Embedding.
    Hong H; Li X; Wang M
    IEEE Trans Neural Netw Learn Syst; 2020 Jul; 31(7):2325-2335. PubMed ID: 31295126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Generative Models for 3D Linker Design.
    Imrie F; Bradley AR; van der Schaar M; Deane CM
    J Chem Inf Model; 2020 Apr; 60(4):1983-1995. PubMed ID: 32195587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EigenFold: Generative Protein Structure Prediction with Diffusion Models.
    Jing B; Erives E; Pao-Huang P; Corso G; Berger B; Jaakkola T
    ArXiv; 2023 Apr; ():. PubMed ID: 37064532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generative Adversarial Networks for De Novo Molecular Design.
    Lee YJ; Kahng H; Kim SB
    Mol Inform; 2021 Oct; 40(10):e2100045. PubMed ID: 34622551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mixed Continuous and Categorical Flow Matching for 3D De Novo Molecule Generation.
    Dunn I; Koes DR
    ArXiv; 2024 Apr; ():. PubMed ID: 38745704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ASMNet: Action and Style-Conditioned Motion Generative Network for 3D Human Motion Generation.
    Li Z; Wang Y; Du X; Wang C; Koch R; Liu M
    Cyborg Bionic Syst; 2024; 5():0090. PubMed ID: 38348153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep generative design with 3D pharmacophoric constraints.
    Imrie F; Hadfield TE; Bradley AR; Deane CM
    Chem Sci; 2021 Nov; 12(43):14577-14589. PubMed ID: 34881010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generating interacting protein sequences using domain-to-domain translation.
    Meynard-Piganeau B; Fabbri C; Weigt M; Pagnani A; Feinauer C
    Bioinformatics; 2023 Jul; 39(7):. PubMed ID: 37399105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein Fold Recognition From Sequences Using Convolutional and Recurrent Neural Networks.
    Villegas-Morcillo A; Gomez AM; Morales-Cordovilla JA; Sanchez V
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2848-2854. PubMed ID: 32750896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving computational protein design by using structure-derived sequence profile.
    Dai L; Yang Y; Kim HR; Zhou Y
    Proteins; 2010 Aug; 78(10):2338-48. PubMed ID: 20544969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.