These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 34423742)

  • 21. Effect of body roll amplitude and arm rotation speed on propulsion of arm amputee swimmers.
    Lecrivain G; Payton C; Slaouti A; Kennedy I
    J Biomech; 2010 Apr; 43(6):1111-7. PubMed ID: 20106479
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanical power, thrust power and propelling efficiency: relationships with elite sprint swimming performance.
    Gatta G; Cortesi M; Swaine I; Zamparo P
    J Sports Sci; 2018 Mar; 36(5):506-512. PubMed ID: 28471718
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinematic hand parameters in front crawl at different paces of swimming.
    Samson M; Monnet T; Bernard A; Lacouture P; David L
    J Biomech; 2015 Nov; 48(14):3743-50. PubMed ID: 26433921
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Relationship Between Propulsive Force in Tethered Swimming and 200-m Front Crawl Performance.
    Santos KB; Bento PC; Pereira G; Rodacki AL
    J Strength Cond Res; 2016 Sep; 30(9):2500-7. PubMed ID: 24531436
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Developing a methodology for estimating the drag in front-crawl swimming at various velocities.
    Narita K; Nakashima M; Takagi H
    J Biomech; 2017 Mar; 54():123-128. PubMed ID: 28249682
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arm coordination, power, and swim efficiency in national and regional front crawl swimmers.
    Seifert L; Toussaint HM; Alberty M; Schnitzler C; Chollet D
    Hum Mov Sci; 2010 Jun; 29(3):426-39. PubMed ID: 20430465
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Perception and action in swimming: Effects of aquatic environment on upper limb inter-segmental coordination.
    Guignard B; Rouard A; Chollet D; Ayad O; Bonifazi M; Dalla Vedova D; Seifert L
    Hum Mov Sci; 2017 Oct; 55():240-254. PubMed ID: 28846856
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of propelling surface size on the mechanics and energetics of front crawl swimming.
    Toussaint HM; Janssen T; Kluft M
    J Biomech; 1991; 24(3-4):205-11. PubMed ID: 2055909
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new device for estimating active drag in swimming at maximal velocity.
    Xin-Feng W; Lian-Ze W; Wei-Xing Y; De-Jian L; Xiong S
    J Sports Sci; 2007 Feb; 25(4):375-9. PubMed ID: 17365524
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of paddles and fins on front crawl kinematics, arm stroke efficiency, coordination, and estimated energy cost.
    De Matos CC; Guignard B; Castro FS; Guimard A
    Front Physiol; 2023; 14():1174090. PubMed ID: 37284541
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Front Crawl Is More Efficient and Has Smaller Active Drag Than Backstroke Swimming: Kinematic and Kinetic Comparison Between the Two Techniques at the Same Swimming Speeds.
    Gonjo T; Narita K; McCabe C; Fernandes RJ; Vilas-Boas JP; Takagi H; Sanders R
    Front Bioeng Biotechnol; 2020; 8():570657. PubMed ID: 33072727
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relationship between shoulder roll and hand propulsion in the front crawl stroke.
    Kudo S; Sakurai Y; Miwa T; Matsuda Y
    J Sports Sci; 2017 May; 35(10):945-952. PubMed ID: 27414043
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Energy balance of human locomotion in water.
    Pendergast D; Zamparo P; di Prampero PE; Capelli C; Cerretelli P; Termin A; Craig A; Bushnell D; Paschke D; Mollendorf J
    Eur J Appl Physiol; 2003 Oct; 90(3-4):377-86. PubMed ID: 12955519
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Active drag, useful mechanical power output and hydrodynamic force coefficient in different swimming strokes at maximal velocity.
    Kolmogorov SV; Duplishcheva OA
    J Biomech; 1992 Mar; 25(3):311-8. PubMed ID: 1564064
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel Method for Estimating Propulsive Force Generated by Swimmers' Hands Using Inertial Measurement Units and Pressure Sensors.
    Kadi T; Wada T; Narita K; Tsunokawa T; Mankyu H; Tamaki H; Ogita F
    Sensors (Basel); 2022 Sep; 22(17):. PubMed ID: 36081152
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Swimming performance is reduced by reflective markers intended for the analysis of swimming kinematics.
    Washino S; Mayfield DL; Lichtwark GA; Mankyu H; Yoshitake Y
    J Biomech; 2019 Jun; 91():109-113. PubMed ID: 31138476
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of Muscle Coordination During Front Crawl and Backstroke With and Without Swimmer's Shoulder Pain.
    Matsuura Y; Matsunaga N; Akuzawa H; Oshikawa T; Kaneoka K
    Sports Health; 2024; 16(1):89-96. PubMed ID: 37042038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. "Pumped-up propulsion" during front crawl swimming.
    Toussaint HM; Van den Berg C; Beek WJ
    Med Sci Sports Exerc; 2002 Feb; 34(2):314-9. PubMed ID: 11828242
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A computational fluid dynamics study of propulsion due to the orientation effects of swimmer's hand.
    Bilinauskaite M; Mantha VR; Rouboa AI; Ziliukas P; Silva AJ
    J Appl Biomech; 2013 Dec; 29(6):817-23. PubMed ID: 24482258
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding the Role of Propulsion in the Prediction of Front-Crawl Swimming Velocity and in the Relationship Between Stroke Frequency and Stroke Length.
    Morais JE; Barbosa TM; Nevill AM; Cobley S; Marinho DA
    Front Physiol; 2022; 13():876838. PubMed ID: 35574451
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.