These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 3442391)

  • 21. A possible role of copper in the regulation of heme biosynthesis through ferrochelatase.
    Wagner GS; Tephly TR
    Adv Exp Med Biol; 1975; 58(00):343-54. PubMed ID: 1155252
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Purification and characterization of murine protoporphyrinogen oxidase.
    Dailey HA; Karr SW
    Biochemistry; 1987 May; 26(10):2697-701. PubMed ID: 3606986
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of arsenite and cadmium ions on xanthine oxidase.
    PETERS JM; SANADI DR
    Arch Biochem Biophys; 1961 May; 93():312-3. PubMed ID: 13734776
    [No Abstract]   [Full Text] [Related]  

  • 24. Mammalian ferrochelatase. Overexpression in Escherichia coli as a soluble protein, purification and characterization.
    Ferreira GC
    J Biol Chem; 1994 Feb; 269(6):4396-400. PubMed ID: 8308010
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In situ conversion of coproporphyrinogen to heme by murine mitochondria: terminal steps of the heme biosynthetic pathway.
    Proulx KL; Woodard SI; Dailey HA
    Protein Sci; 1993 Jul; 2(7):1092-8. PubMed ID: 8358292
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Eukaryotic initiation factor 2alpha kinase is a nitric oxide-responsive mercury sensor enzyme: potent inhibition of catalysis by the mercury cation and reversal by nitric oxide.
    Martinkova M; Igarashi J; Shimizu T
    FEBS Lett; 2007 Aug; 581(21):4109-14. PubMed ID: 17689536
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phosphomannose isomerase from Saccharomyces cerevisiae contains two inhibitory metal ion binding sites.
    Wells TN; Coulin F; Payton MA; Proudfoot AE
    Biochemistry; 1993 Feb; 32(5):1294-301. PubMed ID: 8448139
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of iron deficiency and chronic iron overloading on mitochondrial heme biosynthetic enzymes in rat liver.
    Abraham NG; Camadro JM; Hoffstein ST; Levere RD
    Biochim Biophys Acta; 1986 Mar; 870(2):339-49. PubMed ID: 3955059
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of a Bradyrhizobium japonicum ferrochelatase mutant and isolation of the hemH gene.
    Frustaci JM; O'Brian MR
    J Bacteriol; 1992 Jul; 174(13):4223-9. PubMed ID: 1624416
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Porphyrinogenic activity and ferrochelatase-inhibitory activity of sydnones in chick embryo liver cells.
    Sutherland EP; Marks GS; Grab LA; Ortiz de Montellano PR
    FEBS Lett; 1986 Mar; 197(1-2):17-20. PubMed ID: 3949013
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Inhibition of the growth of Candida utilis by certain heavy metals].
    Semenov AM; Khovrychev MP
    Mikrobiologiia; 1979; 48(6):1120-2. PubMed ID: 575191
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Purification and characterization of chicken erythrocyte ferrochelatase.
    Hanson JW; Dailey HA
    Biochem J; 1984 Sep; 222(3):695-700. PubMed ID: 6487270
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The enzymatic defects in porphyria cutanea tarda and variegate porphyria.
    Kushner JP
    Acta Derm Venereol Suppl (Stockh); 1982; 100():51-6. PubMed ID: 6962633
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New developments in the regulation of heme metabolism and their implications.
    Maines MD
    Crit Rev Toxicol; 1984; 12(3):241-314. PubMed ID: 6378529
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biliverdin reductase: characterization in the rat kidney and the inhibition of activity by mercuric chloride.
    Kutty RK; Maines MD
    Biochem Pharmacol; 1983 Jul; 32(13):2095-102. PubMed ID: 6223639
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Purification and characterization of ferro- and cobalto-chelatases.
    Cánepa ET; Llambías EB
    Biochem Cell Biol; 1988 Jan; 66(1):32-9. PubMed ID: 3370141
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Purification and characterization of the membrane-bound ferrochelatase from Spirillum itersonii.
    Dailey HA
    J Bacteriol; 1977 Oct; 132(1):302-7. PubMed ID: 21163
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetics of protoporphyrinogen oxidase inhibition by diphenyleneiodonium derivatives.
    Arnould S; Berthon JL; Hubert C; Dias M; Cibert C; Mornet R; Camadro JM
    Biochemistry; 1997 Aug; 36(33):10178-84. PubMed ID: 9254615
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The use of N-methylprotoporphyrin dimethyl ester to inhibit ferrochelatase in Rhodopseudomonas sphaeroides and its effect in promoting biosynthesis of magnesium tetrapyrroles.
    Houghton JD; Honeybourne CL; Smith KM; Tabba HD; Jones OT
    Biochem J; 1982 Nov; 208(2):479-86. PubMed ID: 6984332
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ferrochelatase-inhibitory activity and N-alkylprotoporphyrin formation with analogues of 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine (DDC) containing extended 4-alkyl groups: implications for the active site of ferrochelatase.
    McCluskey SA; Marks GS; Sutherland EP; Jacobsen N; Ortiz de Montellano PR
    Mol Pharmacol; 1986 Oct; 30(4):352-7. PubMed ID: 3762522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.