These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34423972)

  • 21. Ultrarapid Nanomanufacturing of High-Quality Bimetallic Anode Library toward Stable Potassium-Ion Storage.
    Dou S; Xu J; Zhang D; Liu W; Zeng C; Zhang J; Liu Z; Wang H; Liu Y; Wang Y; He Y; Liu WD; Gan W; Chen Y; Yuan Q
    Angew Chem Int Ed Engl; 2023 Jun; 62(26):e202303600. PubMed ID: 37041661
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aerosol Synthesis of High Entropy Alloy Nanoparticles.
    Yang Y; Song B; Ke X; Xu F; Bozhilov KN; Hu L; Shahbazian-Yassar R; Zachariah MR
    Langmuir; 2020 Mar; 36(8):1985-1992. PubMed ID: 32045255
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A fourteen-component high-entropy alloy@oxide bifunctional electrocatalyst with a record-low Δ
    Jin Z; Zhou X; Hu Y; Tang X; Hu K; Reddy KM; Lin X; Qiu HJ
    Chem Sci; 2022 Oct; 13(41):12056-12064. PubMed ID: 36349094
    [TBL] [Abstract][Full Text] [Related]  

  • 24.
    Yao Y; Chen F; Nie A; Lacey SD; Jacob RJ; Xu S; Huang Z; Fu K; Dai J; Salamanca-Riba L; Zachariah MR; Shahbazian-Yassar R; Hu L
    ACS Cent Sci; 2017 Apr; 3(4):294-301. PubMed ID: 28470046
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Roll-to-Roll Nanomanufacturing of Hybrid Nanostructures for Energy Storage Device Design.
    Oakes L; Hanken T; Carter R; Yates W; Pint CL
    ACS Appl Mater Interfaces; 2015 Jul; 7(26):14201-10. PubMed ID: 26053115
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Elemental Core Level Shift in High Entropy Alloy Nanoparticles
    Xu X; Guo Y; Bloom BP; Wei J; Li H; Li H; Du Y; Zeng Z; Li L; Waldeck DH
    ACS Nano; 2020 Dec; 14(12):17704-17712. PubMed ID: 33284574
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Revealing High-Temperature Reduction Dynamics of High-Entropy Alloy Nanoparticles
    Song B; Yang Y; Yang TT; He K; Hu X; Yuan Y; Dravid VP; Zachariah MR; Saidi WA; Liu Y; Shahbazian-Yassar R
    Nano Lett; 2021 Feb; 21(4):1742-1748. PubMed ID: 33570961
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrafast Preparation of Monodisperse Fe3 O4 Nanoparticles by Microwave-Assisted Thermal Decomposition.
    Liang YJ; Zhang Y; Guo Z; Xie J; Bai T; Zou J; Gu N
    Chemistry; 2016 Aug; 22(33):11807-15. PubMed ID: 27381301
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Instantaneous formation of metal and metal oxide nanoparticles on carbon nanotubes and graphene via solvent-free microwave heating.
    Lin Y; Baggett DW; Kim JW; Siochi EJ; Connell JW
    ACS Appl Mater Interfaces; 2011 May; 3(5):1652-64. PubMed ID: 21517032
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.
    Kwon SG; Hyeon T
    Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Ternary Alloy Substrate to Synthesize Monolayer Graphene with Liquid Carbon Precursor.
    Gan W; Han N; Yang C; Wu P; Liu Q; Zhu W; Chen S; Wu C; Habib M; Sang Y; Muhammad Z; Zhao J; Song L
    ACS Nano; 2017 Feb; 11(2):1371-1379. PubMed ID: 28085266
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conformal Noble Metal High-Entropy Alloy Nanofilms by Atomic Layer Deposition for an Enhanced Hydrogen Evolution Reaction.
    Jing L; Zou Y; Goei R; Wang L; Ong JA; Kurkin A; Li Y; Tan KW; Tok AIY
    Langmuir; 2023 Feb; 39(8):3142-3150. PubMed ID: 36795954
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid Synthesis of High-Entropy Oxide Microparticles.
    Dong Q; Hong M; Gao J; Li T; Cui M; Li S; Qiao H; Brozena AH; Yao Y; Wang X; Chen G; Luo J; Hu L
    Small; 2022 Mar; 18(11):e2104761. PubMed ID: 35049145
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanical Enhancement of Core-Shell Microlattices through High-Entropy Alloy Coating.
    Surjadi JU; Gao L; Cao K; Fan R; Lu Y
    Sci Rep; 2018 Apr; 8(1):5442. PubMed ID: 29615746
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO
    Mori K; Hashimoto N; Kamiuchi N; Yoshida H; Kobayashi H; Yamashita H
    Nat Commun; 2021 Jun; 12(1):3884. PubMed ID: 34162865
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Autocatalytic Formation of High-Entropy Alloy Nanoparticles.
    Broge NLN; Bondesgaard M; Søndergaard-Pedersen F; Roelsgaard M; Iversen BB
    Angew Chem Int Ed Engl; 2020 Dec; 59(49):21920-21924. PubMed ID: 32820603
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stabilization of Titanium Dioxide Nanoparticles at the Surface of Carbon Nanomaterials Promoted by Microwave Heating.
    Zhang R; Santangelo S; Fazio E; Neri F; D'Arienzo M; Morazzoni F; Zhang Y; Pinna N; Russo PA
    Chemistry; 2015 Oct; 21(42):14901-10. PubMed ID: 26307370
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics.
    Gawande MB; Shelke SN; Zboril R; Varma RS
    Acc Chem Res; 2014 Apr; 47(4):1338-48. PubMed ID: 24666323
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Beating Thermal Coarsening in Nanoporous Materials via High-Entropy Design.
    Joo SH; Bae JW; Park WY; Shimada Y; Wada T; Kim HS; Takeuchi A; Konno TJ; Kato H; Okulov IV
    Adv Mater; 2020 Feb; 32(6):e1906160. PubMed ID: 31799755
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    Song B; Yang Y; Rabbani M; Yang TT; He K; Hu X; Yuan Y; Ghildiyal P; Dravid VP; Zachariah MR; Saidi WA; Liu Y; Shahbazian-Yassar R
    ACS Nano; 2020 Nov; 14(11):15131-15143. PubMed ID: 33079522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.