These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 34424235)

  • 1. Visualizing Solution Structure at Solid-Liquid Interfaces using Three-Dimensional Fast Force Mapping.
    Nakouzi E; Yadav S; Legg BA; Zhang S; Tao J; Mundy CJ; Schenter GK; Chun J; De Yoreo JJ
    J Vis Exp; 2021 Aug; (174):. PubMed ID: 34424235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic- and Molecular-Resolution Mapping of Solid-Liquid Interfaces by 3D Atomic Force Microscopy.
    Fukuma T; Garcia R
    ACS Nano; 2018 Dec; 12(12):11785-11797. PubMed ID: 30422619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvements in fundamental performance of in-liquid frequency modulation atomic force microscopy.
    Fukuma T
    Microscopy (Oxf); 2020 Dec; 69(6):340-349. PubMed ID: 32780817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subnanometer-scale imaging of nanobio-interfaces by frequency modulation atomic force microscopy.
    Fukuma T
    Biochem Soc Trans; 2020 Aug; 48(4):1675-1682. PubMed ID: 32779720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial distribution of lipid headgroups and water molecules at membrane/water interfaces visualized by three-dimensional scanning force microscopy.
    Asakawa H; Yoshioka S; Nishimura K; Fukuma T
    ACS Nano; 2012 Oct; 6(10):9013-20. PubMed ID: 23013290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water distribution at solid/liquid interfaces visualized by frequency modulation atomic force microscopy.
    Fukuma T
    Sci Technol Adv Mater; 2010 Jun; 11(3):033003. PubMed ID: 27877337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of ions on two-dimensional and three-dimensional atomic force microscopy at fluorite-water interfaces.
    Miyazawa K; Watkins M; Shluger AL; Fukuma T
    Nanotechnology; 2017 Jun; 28(24):245701. PubMed ID: 28481216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing and Visualizing Interfacial Charge at Surfaces in Aqueous Solution.
    Caniglia G; Tezcan G; Meloni GN; Unwin PR; Kranz C
    Annu Rev Anal Chem (Palo Alto Calif); 2022 Jun; 15(1):247-267. PubMed ID: 35259914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional atomic force microscopy - taking surface imaging to the next level.
    Baykara MZ; Schwendemann TC; Altman EI; Schwarz UD
    Adv Mater; 2010 Jul; 22(26-27):2838-53. PubMed ID: 20379997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic force microscopy as an imaging tool to study the bio/nonbio complexes.
    Bednarikova Z; Gazova Z; Valle F; Bystrenova E
    J Microsc; 2020 Dec; 280(3):241-251. PubMed ID: 32519330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional atomic force microscopy mapping at the solid-liquid interface with fast and flexible data acquisition.
    Söngen H; Nalbach M; Adam H; Kühnle A
    Rev Sci Instrum; 2016 Jun; 87(6):063704. PubMed ID: 27370456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in Atomic Force Microscopy: Imaging of Two- and Three-Dimensional Interfacial Water.
    Cao D; Song Y; Tang B; Xu L
    Front Chem; 2021; 9():745446. PubMed ID: 34631666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging three-dimensional surface objects with submolecular resolution by atomic force microscopy.
    Moreno C; Stetsovych O; Shimizu TK; Custance O
    Nano Lett; 2015 Apr; 15(4):2257-62. PubMed ID: 25756297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sub-nanometer Resolution Imaging with Amplitude-modulation Atomic Force Microscopy in Liquid.
    Miller EJ; Trewby W; Farokh Payam A; Piantanida L; Cafolla C; Voïtchovsky K
    J Vis Exp; 2016 Dec; (118):. PubMed ID: 28060262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping heterogeneity of cellular mechanics by multi-harmonic atomic force microscopy.
    Efremov YM; Cartagena-Rivera AX; Athamneh AIM; Suter DM; Raman A
    Nat Protoc; 2018 Oct; 13(10):2200-2216. PubMed ID: 30218102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The qPlus sensor, a powerful core for the atomic force microscope.
    Giessibl FJ
    Rev Sci Instrum; 2019 Jan; 90(1):011101. PubMed ID: 30709191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anharmonicity, solvation forces, and resolution in atomic force microscopy at the solid-liquid interface.
    Voïtchovsky K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022407. PubMed ID: 24032849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional quantitative force maps in liquid with 10 piconewton, angstrom and sub-minute resolutions.
    Herruzo ET; Asakawa H; Fukuma T; Garcia R
    Nanoscale; 2013 Apr; 5(7):2678-85. PubMed ID: 23235926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast and high-resolution mapping of elastic properties of biomolecules and polymers with bimodal AFM.
    Benaglia S; Gisbert VG; Perrino AP; Amo CA; Garcia R
    Nat Protoc; 2018 Dec; 13(12):2890-2907. PubMed ID: 30446750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.