These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34424280)

  • 1. Chromosome-level genome assembly of Japanese chestnut (Castanea crenata Sieb. et Zucc.) reveals conserved chromosomal segments in woody rosids.
    Shirasawa K; Nishio S; Terakami S; Botta R; Marinoni DT; Isobe S
    DNA Res; 2021 Sep; 28(5):. PubMed ID: 34424280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromosome-level genome assembly provides new insights into Japanese chestnut (
    Wang J; Hong P; Qiao Q; Zhu D; Zhang L; Lin K; Sun S; Jiang S; Shen B; Zhang S; Liu Q
    Front Plant Sci; 2022; 13():1049253. PubMed ID: 36518506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substantial genome synteny preservation among woody angiosperm species: comparative genomics of Chinese chestnut (Castanea mollissima) and plant reference genomes.
    Staton M; Zhebentyayeva T; Olukolu B; Fang GC; Nelson D; Carlson JE; Abbott AG
    BMC Genomics; 2015 Oct; 16():744. PubMed ID: 26438416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of Pseudomolecules for the Chinese Chestnut (
    Wang J; Tian S; Sun X; Cheng X; Duan N; Tao J; Shen G
    G3 (Bethesda); 2020 Oct; 10(10):3565-3574. PubMed ID: 32847817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The de novo, chromosome-level genome assembly of the sweet chestnut (Castanea sativa Mill.) Cv. Marrone Di Chiusa Pesio.
    Bianco L; Fontana P; Marchesini A; Torre S; Moser M; Piazza S; Alessandri S; Pavese V; Pollegioni P; Vernesi C; Malnoy M; Torello Marinoni D; Murolo S; Dondini L; Mattioni C; Botta R; Sebastiani F; Micheletti D; Palmieri L
    BMC Genom Data; 2024 Jun; 25(1):64. PubMed ID: 38909221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chestnut resistance to the blight disease: insights from transcriptome analysis.
    Barakat A; Staton M; Cheng CH; Park J; Yassin NB; Ficklin S; Yeh CC; Hebard F; Baier K; Powell W; Schuster SC; Wheeler N; Abbott A; Carlson JE; Sederoff R
    BMC Plant Biol; 2012 Mar; 12():38. PubMed ID: 22429310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic evidence that Chinese chestnut cultivars in Japan are derived from two divergent genetic structures that originated in China.
    Nishio S; Ruan S; Sawamura Y; Terakami S; Takada N; Takeuchi Y; Saito T; Inoue E
    PLoS One; 2020; 15(7):e0235354. PubMed ID: 32609773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First interspecific genetic linkage map for Castanea sativa x Castanea crenata revealed QTLs for resistance to Phytophthora cinnamomi.
    Santos C; Nelson CD; Zhebentyayeva T; Machado H; Gomes-Laranjo J; Costa RL
    PLoS One; 2017; 12(9):e0184381. PubMed ID: 28880954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the transcriptomes of American chestnut (Castanea dentata) and Chinese chestnut (Castanea mollissima) in response to the chestnut blight infection.
    Barakat A; DiLoreto DS; Zhang Y; Smith C; Baier K; Powell WA; Wheeler N; Sederoff R; Carlson JE
    BMC Plant Biol; 2009 May; 9():51. PubMed ID: 19426529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid de novo genome assembly of Chinese chestnut (Castanea mollissima).
    Xing Y; Liu Y; Zhang Q; Nie X; Sun Y; Zhang Z; Li H; Fang K; Wang G; Huang H; Bisseling T; Cao Q; Qin L
    Gigascience; 2019 Sep; 8(9):. PubMed ID: 31513707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide SNP identification for the construction of a high-resolution genetic map of Japanese flounder (Paralichthys olivaceus): applications to QTL mapping of Vibrio anguillarum disease resistance and comparative genomic analysis.
    Shao C; Niu Y; Rastas P; Liu Y; Xie Z; Li H; Wang L; Jiang Y; Tai S; Tian Y; Sakamoto T; Chen S
    DNA Res; 2015 Apr; 22(2):161-70. PubMed ID: 25762582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The complete chloroplast genome of
    Kang MJ; Kim TD; Lee SA; Lee HR; Kim C; Lee H; Park EJ
    Mitochondrial DNA B Resour; 2019 Nov; 4(2):3864-3865. PubMed ID: 33366224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromosome-scale genome assembly of Castanopsis tibetana provides a powerful comparative framework to study the evolution and adaptation of Fagaceae trees.
    Sun Y; Guo J; Zeng X; Chen R; Feng Y; Chen S; Yang K
    Mol Ecol Resour; 2022 Apr; 22(3):1178-1189. PubMed ID: 34689424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromosome-scale genome assembly of Japanese pear (Pyrus pyrifolia) variety 'Nijisseiki'.
    Shirasawa K; Itai A; Isobe S
    DNA Res; 2021 May; 28(2):. PubMed ID: 33638981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pan-genome analysis of three main Chinese chestnut varieties.
    Hu G; Cheng L; Cheng Y; Mao W; Qiao Y; Lan Y
    Front Plant Sci; 2022; 13():916550. PubMed ID: 35958219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A ddRAD-based genetic map and its integration with the genome assembly of Japanese eel (Anguilla japonica) provides insights into genome evolution after the teleost-specific genome duplication.
    Kai W; Nomura K; Fujiwara A; Nakamura Y; Yasuike M; Ojima N; Masaoka T; Ozaki A; Kazeto Y; Gen K; Nagao J; Tanaka H; Kobayashi T; Ototake M
    BMC Genomics; 2014 Mar; 15():233. PubMed ID: 24669946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Weed Suppressing Potential and Isolation of Potent Plant Growth Inhibitors from Castanea crenata Sieb. et Zucc.
    Tuyen PT; Xuan TD; Tu Anh TT; Mai Van T; Ahmad A; Elzaawely AA; Khanh TD
    Molecules; 2018 Feb; 23(2):. PubMed ID: 29414866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenology, Density and Parasitism of Asian Chestnut Gall Wasp (Dryocosmus kuriphilus) (Hymenoptera: Cynipidae) in Recently Invaded Chestnut (Castanea spp.) Orchards in Michigan.
    Labbate L; McCullough DG
    Environ Entomol; 2022 Aug; 51(4):747-762. PubMed ID: 35639523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutathione transferase, but not agglutinin, is a dormancy-related protein in Castanea crenata trees.
    Nomura K; Ikegami A; Koide A; Yagi F
    Plant Physiol Biochem; 2007 Jan; 45(1):15-23. PubMed ID: 17296304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of transcriptome-wide, nut weight-associated SNPs in Castanea crenata.
    Kang MJ; Shin AY; Shin Y; Lee SA; Lee HR; Kim TD; Choi M; Koo N; Kim YM; Kyeong D; Subramaniyam S; Park EJ
    Sci Rep; 2019 Sep; 9(1):13161. PubMed ID: 31511588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.