These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 3442448)

  • 1. Voltage-dependent depolarization of bacterial membranes and artificial lipid bilayers by the peptide antibiotic nisin.
    Sahl HG; Kordel M; Benz R
    Arch Microbiol; 1987; 149(2):120-4. PubMed ID: 3442448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mode of action of the staphylococcinlike peptide Pep 5: voltage-dependent depolarization of bacterial and artificial membranes.
    Kordel M; Benz R; Sahl HG
    J Bacteriol; 1988 Jan; 170(1):84-8. PubMed ID: 3335484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial membrane injuries induced by lactacin F and nisin.
    Dalmau M; Maier E; Mulet N; Viñas M; Benz R
    Int Microbiol; 2002 Jun; 5(2):73-80. PubMed ID: 12180783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The peptide antibiotic subtilin acts by formation of voltage-dependent multi-state pores in bacterial and artificial membranes.
    Schüller F; Benz R; Sahl HG
    Eur J Biochem; 1989 Jun; 182(1):181-6. PubMed ID: 2471644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of nisin with planar lipid bilayers monitored by fluorescence recovery after photobleaching.
    Giffard CJ; Ladha S; Mackie AR; Clark DC; Sanders D
    J Membr Biol; 1996 Jun; 151(3):293-300. PubMed ID: 8661516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid II-mediated pore formation by the peptide antibiotic nisin: a black lipid membrane study.
    Wiedemann I; Benz R; Sahl HG
    J Bacteriol; 2004 May; 186(10):3259-61. PubMed ID: 15126490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid-II Independent Antimicrobial Mechanism of Nisin Depends On Its Crowding And Degree Of Oligomerization.
    Prince A; Sandhu P; Ror P; Dash E; Sharma S; Arakha M; Jha S; Akhter Y; Saleem M
    Sci Rep; 2016 Nov; 6():37908. PubMed ID: 27897200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of the pore forming-peptide antibiotics Pep 5, nisin and subtilin with non-energized liposomes.
    Kordel M; Schüller F; Sahl HG
    FEBS Lett; 1989 Feb; 244(1):99-102. PubMed ID: 2924913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mode of action of the peptide antibiotic nisin and influence on the membrane potential of whole cells and on cytoplasmic and artificial membrane vesicles.
    Ruhr E; Sahl HG
    Antimicrob Agents Chemother; 1985 May; 27(5):841-5. PubMed ID: 4015074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of transmembrane pH gradient and membrane binding in nisin pore formation.
    Moll GN; Clark J; Chan WC; Bycroft BW; Roberts GC; Konings WN; Driessen AJ
    J Bacteriol; 1997 Jan; 179(1):135-40. PubMed ID: 8981990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion channels in the chloroplast envelope membrane.
    Heiber T; Steinkamp T; Hinnah S; Schwarz M; Flügge UI; Weber A; Wagner R
    Biochemistry; 1995 Dec; 34(49):15906-17. PubMed ID: 8519747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro pore-forming activity of the lantibiotic nisin. Role of protonmotive force and lipid composition.
    Garcerá MJ; Elferink MG; Driessen AJ; Konings WN
    Eur J Biochem; 1993 Mar; 212(2):417-22. PubMed ID: 8444179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pore formation by the Bordetella adenylate cyclase toxin in lipid bilayer membranes: role of voltage and pH.
    Knapp O; Maier E; Masín J; Sebo P; Benz R
    Biochim Biophys Acta; 2008 Jan; 1778(1):260-9. PubMed ID: 17976530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The C-terminal region of nisin is responsible for the initial interaction of nisin with the target membrane.
    Breukink E; van Kraaij C; Demel RA; Siezen RJ; Kuipers OP; de Kruijff B
    Biochemistry; 1997 Jun; 36(23):6968-76. PubMed ID: 9188693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the channel properties of tetanus toxin in planar lipid bilayers.
    Gambale F; Montal M
    Biophys J; 1988 May; 53(5):771-83. PubMed ID: 2455552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple types of voltage-dependent Ca2+-activated K+ channels of large conductance in rat brain synaptosomal membranes.
    Farley J; Rudy B
    Biophys J; 1988 Jun; 53(6):919-34. PubMed ID: 2456105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane permeabilization by thrombin-induced platelet microbicidal protein 1 is modulated by transmembrane voltage polarity and magnitude.
    Koo SP; Bayer AS; Kagan BL; Yeaman MR
    Infect Immun; 1999 May; 67(5):2475-81. PubMed ID: 10225910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-function relations of variant and fragment nisins studied with model membrane systems.
    Giffard CJ; Dodd HM; Horn N; Ladha S; Mackie AR; Parr A; Gasson MJ; Sanders D
    Biochemistry; 1997 Apr; 36(13):3802-10. PubMed ID: 9092809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics.
    Brötz H; Josten M; Wiedemann I; Schneider U; Götz F; Bierbaum G; Sahl HG
    Mol Microbiol; 1998 Oct; 30(2):317-27. PubMed ID: 9791177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The lantibiotic nisin, a special case or not?
    Breukink E; de Kruijff B
    Biochim Biophys Acta; 1999 Dec; 1462(1-2):223-34. PubMed ID: 10590310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.