These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34424898)

  • 1. Analysis of protrusion dynamics in amoeboid cell motility by means of regularized contour flows.
    Schindler D; Moldenhawer T; Stange M; Lepro V; Beta C; Holschneider M; Huisinga W
    PLoS Comput Biol; 2021 Aug; 17(8):e1009268. PubMed ID: 34424898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated characterization of cell shape changes during amoeboid motility by skeletonization.
    Xiong Y; Kabacoff C; Franca-Koh J; Devreotes PN; Robinson DN; Iglesias PA
    BMC Syst Biol; 2010 Mar; 4():33. PubMed ID: 20334652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling random crawling, membrane deformation and intracellular polarity of motile amoeboid cells.
    Alonso S; Stange M; Beta C
    PLoS One; 2018; 13(8):e0201977. PubMed ID: 30138392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanosensitive Adhesion Explains Stepping Motility in Amoeboid Cells.
    Copos CA; Walcott S; Del Álamo JC; Bastounis E; Mogilner A; Guy RD
    Biophys J; 2017 Jun; 112(12):2672-2682. PubMed ID: 28636923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Both contractile axial and lateral traction force dynamics drive amoeboid cell motility.
    Bastounis E; Meili R; Álvarez-González B; Francois J; del Álamo JC; Firtel RA; Lasheras JC
    J Cell Biol; 2014 Mar; 204(6):1045-61. PubMed ID: 24637328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical modeling of chemotaxis guided amoeboid cell swimming.
    Wang Q; Wu H
    Phys Biol; 2021 May; 18(4):. PubMed ID: 33853049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous quantification of cell motility and protein-membrane-association using active contours.
    Dormann D; Libotte T; Weijer CJ; Bretschneider T
    Cell Motil Cytoskeleton; 2002 Aug; 52(4):221-30. PubMed ID: 12112136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amoeboid leukocyte crawling through extracellular matrix: lessons from the Dictyostelium paradigm of cell movement.
    Friedl P; Borgmann S; Bröcker EB
    J Leukoc Biol; 2001 Oct; 70(4):491-509. PubMed ID: 11590185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in geometric techniques for analyzing blebbing in chemotaxing Dictyostelium cells.
    Santiago Z; Loustau J; Meretzky D; Rawal D; Brazill D
    PLoS One; 2019; 14(2):e0211975. PubMed ID: 30763409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational analysis of amoeboid swimming at low Reynolds number.
    Wang Q; Othmer HG
    J Math Biol; 2016 Jun; 72(7):1893-926. PubMed ID: 26362281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amoeboid movement anchored by eupodia, new actin-rich knobby feet in Dictyostelium.
    Fukui Y; Inoué S
    Cell Motil Cytoskeleton; 1997; 36(4):339-54. PubMed ID: 9096956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell-substrate interactions and locomotion of Dictyostelium wild-type and mutants defective in three cytoskeletal proteins: a study using quantitative reflection interference contrast microscopy.
    Schindl M; Wallraff E; Deubzer B; Witke W; Gerisch G; Sackmann E
    Biophys J; 1995 Mar; 68(3):1177-90. PubMed ID: 7756537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative analysis of cell motility and chemotaxis in Dictyostelium discoideum by using an image processing system and a novel chemotaxis chamber providing stationary chemical gradients.
    Fisher PR; Merkl R; Gerisch G
    J Cell Biol; 1989 Mar; 108(3):973-84. PubMed ID: 2537839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrete Modeling of Amoeboid Locomotion and Chemotaxis in Dictyostelium discoideum by Tracking Pseudopodium Growth Direction.
    Eidi Z
    Sci Rep; 2017 Oct; 7(1):12675. PubMed ID: 28978932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying the degree of persistence in random amoeboid motion based on the Hurst exponent of fractional Brownian motion.
    Makarava N; Menz S; Theves M; Huisinga W; Beta C; Holschneider M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042703. PubMed ID: 25375519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computational study of amoeboid motility in 3D: the role of extracellular matrix geometry, cell deformability, and cell-matrix adhesion.
    Campbell EJ; Bagchi P
    Biomech Model Mechanobiol; 2021 Feb; 20(1):167-191. PubMed ID: 32772275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dictyostelium discoideum adhesion and motility under shear flow: experimental and theoretical approaches.
    Bruckert F; Décavé E; Garrivier D; Cosson P; Bréchet Y; Fourcade B; Satre M
    J Muscle Res Cell Motil; 2002; 23(7-8):651-8. PubMed ID: 12952064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase geometries of two-dimensional excitable waves govern self-organized morphodynamics of amoeboid cells.
    Taniguchi D; Ishihara S; Oonuki T; Honda-Kitahara M; Kaneko K; Sawai S
    Proc Natl Acad Sci U S A; 2013 Mar; 110(13):5016-21. PubMed ID: 23479620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Image based validation of dynamical models for cell reorientation.
    Lockley R; Ladds G; Bretschneider T
    Cytometry A; 2015 Jun; 87(6):471-80. PubMed ID: 25492625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.