These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 34425159)

  • 1. Motor Cortical Excitability Changes in Preparation to Concentric and Eccentric Movements.
    Canepa P; Papaxanthis C; Bisio A; Biggio M; Paizis C; Faelli E; Avanzino L; Bove M
    Neuroscience; 2021 Nov; 475():73-82. PubMed ID: 34425159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle length effect on corticospinal excitability during maximal concentric, isometric and eccentric contractions of the knee extensors.
    Doguet V; Nosaka K; Guével A; Thickbroom G; Ishimura K; Jubeau M
    Exp Physiol; 2017 Nov; 102(11):1513-1523. PubMed ID: 28796385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in corticospinal excitability during the preparation phase of ballistic and ramp contractions.
    Baudry S; Duchateau J
    J Physiol; 2021 Mar; 599(5):1551-1566. PubMed ID: 33481277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in corticospinal excitability and the direction of evoked movements during motor preparation: a TMS study.
    van Elswijk G; Schot WD; Stegeman DF; Overeem S
    BMC Neurosci; 2008 Jun; 9():51. PubMed ID: 18559096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corticospinal excitability during shortening and lengthening actions with incremental torque output.
    Škarabot J; Tallent J; Goodall S; Durbaba R; Howatson G
    Exp Physiol; 2018 Dec; 103(12):1586-1592. PubMed ID: 30286253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of Corticospinal Excitability of Trunk Muscles in Preparation of Rapid Arm Movement.
    Massé-Alarie H; Neige C; Bouyer LJ; Mercier C
    Neuroscience; 2018 Jan; 369():231-241. PubMed ID: 29174911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corticospinal Modulations during Motor Imagery of Concentric, Eccentric, and Isometric Actions.
    Grosprêtre S; Papaxanthis C; Martin A
    Med Sci Sports Exerc; 2020 May; 52(5):1031-1040. PubMed ID: 31764463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive Modulation of Corticospinal Excitability and Implicit Encoding of Movement Probability in Schizophrenia.
    Dupin L; Carment L; Guedj L; Cuenca M; Krebs MO; Maier MA; Amado I; Lindberg PG
    Schizophr Bull; 2019 Oct; 45(6):1358-1366. PubMed ID: 30561714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor training strengthens corticospinal suppression during movement preparation.
    Vassiliadis P; Derosiere G; Grandjean J; Duque J
    J Neurophysiol; 2020 Dec; 124(6):1656-1666. PubMed ID: 32997598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time changes in corticospinal excitability related to motor imagery of a force control task.
    Tatemoto T; Tsuchiya J; Numata A; Osawa R; Yamaguchi T; Tanabe S; Kondo K; Otaka Y; Sugawara K
    Behav Brain Res; 2017 Sep; 335():185-190. PubMed ID: 28827129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of movement-related pain on behaviour and corticospinal excitability changes associated with arm movement preparation.
    Neige C; Mavromatis N; Gagné M; Bouyer LJ; Mercier C
    J Physiol; 2018 Jul; 596(14):2917-2929. PubMed ID: 29855037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased cross-education of muscle strength and reduced corticospinal inhibition following eccentric strength training.
    Kidgell DJ; Frazer AK; Daly RM; Rantalainen T; Ruotsalainen I; Ahtiainen J; Avela J; Howatson G
    Neuroscience; 2015 Aug; 300():566-75. PubMed ID: 26037804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corticospinal excitability modulation by pairing peripheral nerve stimulation with cortical states of movement initiation.
    Fu L; Rocchi L; Hannah R; Xu G; Rothwell JC; Ibáñez J
    J Physiol; 2021 May; 599(9):2471-2482. PubMed ID: 31579945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced corticospinal responses in older compared with younger adults during submaximal isometric, shortening, and lengthening contractions.
    Škarabot J; Ansdell P; Brownstein CG; Hicks KM; Howatson G; Goodall S; Durbaba R
    J Appl Physiol (1985); 2019 Apr; 126(4):1015-1031. PubMed ID: 30730812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered corticospinal function during movement preparation in humans with spinal cord injury.
    Federico P; Perez MA
    J Physiol; 2017 Jan; 595(1):233-245. PubMed ID: 27485306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global Corticospinal Excitability as Assessed in A Non-Exercised Upper Limb Muscle Compared Between Concentric and Eccentric Modes of Leg Cycling.
    Walsh JA; Stapley PJ; Shemmell JBH; Lepers R; McAndrew DJ
    Sci Rep; 2019 Dec; 9(1):19212. PubMed ID: 31844115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Premovement Suppression of Corticospinal Excitability may be a Necessary Part of Movement Preparation.
    Ibáñez J; Hannah R; Rocchi L; Rothwell JC
    Cereb Cortex; 2020 May; 30(5):2910-2923. PubMed ID: 31813990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in corticospinal excitability during bilateral and unilateral lower-limb force control tasks.
    Yamaguchi A; Sasaki A; Masugi Y; Milosevic M; Nakazawa K
    Exp Brain Res; 2020 Sep; 238(9):1977-1987. PubMed ID: 32591958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single pulse TMS during preparation for lower limb movement: Effect of task predictability on corticospinal excitability.
    Saumur TM; Mochizuki G
    Brain Res; 2018 Oct; 1697():105-112. PubMed ID: 30053404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corticospinal excitability is enhanced while preparing for complex movements.
    Kennefick M; Burma JS; van Donkelaar P; McNeil CJ
    Exp Brain Res; 2019 Mar; 237(3):829-837. PubMed ID: 30610263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.