BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 34425160)

  • 1. Neurofeedback Training of the Control Network in Children Improves Brain Computer Interface Performance.
    Sun J; He J; Gao X
    Neuroscience; 2021 Dec; 478():24-38. PubMed ID: 34425160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alpha neurofeedback training improves SSVEP-based BCI performance.
    Wan F; da Cruz JN; Nan W; Wong CM; Vai MI; Rosa A
    J Neural Eng; 2016 Jun; 13(3):036019. PubMed ID: 27152666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploration of User's Mental State Changes during Performing Brain-Computer Interface.
    Ko LW; Chikara RK; Lee YC; Lin WC
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32503162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single stimulus location for two inputs: A combined brain-computer interface based on Steady-State Visual Evoked Potential (SSVEP).
    Wang L; Zhang Z; Han D; Zhang Z; Liu Z; Liu W
    Eur J Neurosci; 2021 Feb; 53(3):861-875. PubMed ID: 33128787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A visual-haptic neurofeedback training improves sensorimotor cortical activations and BCI performance.
    Wang Z; Zhou Y; Chen L; Gu B; Liu S; Xu M; Qi H; He F; Ming D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6335-6338. PubMed ID: 31947291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Open Dataset for Wearable SSVEP-Based Brain-Computer Interfaces.
    Zhu F; Jiang L; Dong G; Gao X; Wang Y
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33578754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurofeedback training with a motor imagery-based BCI: neurocognitive improvements and EEG changes in the elderly.
    Gomez-Pilar J; Corralejo R; Nicolas-Alonso LF; Álvarez D; Hornero R
    Med Biol Eng Comput; 2016 Nov; 54(11):1655-1666. PubMed ID: 26906278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Objective evaluation of fatigue by EEG spectral analysis in steady-state visual evoked potential-based brain-computer interfaces.
    Cao T; Wan F; Wong CM; da Cruz JN; Hu Y
    Biomed Eng Online; 2014 Mar; 13(1):28. PubMed ID: 24621009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SSVEP-assisted RSVP brain-computer interface paradigm for multi-target classification.
    Ko LW; Sandeep Vara Sankar D; Huang Y; Lu YC; Shaw S; Jung TP
    J Neural Eng; 2021 Feb; 18(1):. PubMed ID: 33291083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A BCI based visual-haptic neurofeedback training improves cortical activations and classification performance during motor imagery.
    Wang Z; Zhou Y; Chen L; Gu B; Liu S; Xu M; Qi H; He F; Ming D
    J Neural Eng; 2019 Oct; 16(6):066012. PubMed ID: 31365911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A frequency recognition method based on multitaper spectral analysis and SNR estimation for SSVEP-based brain-computer interface.
    Chen Yang ; Xu Han ; Yijun Wang ; Xiaorong Gao
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1930-1933. PubMed ID: 29060270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of classification accuracy in a phase-tagged steady-state visual evoked potential-based brain computer interface using multiclass support vector machine.
    Yeh CL; Lee PL; Chen WM; Chang CY; Wu YT; Lan GY
    Biomed Eng Online; 2013 May; 12():46. PubMed ID: 23692974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Role of Visual Noise in Influencing Mental Load and Fatigue in a Steady-State Motion Visual Evoked Potential-Based Brain-Computer Interface.
    Xie J; Xu G; Luo A; Li M; Zhang S; Han C; Yan W
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28805731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Dynamic Window Recognition Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Spatio-Temporal Equalizer.
    Yang C; Han X; Wang Y; Saab R; Gao S; Gao X
    Int J Neural Syst; 2018 Dec; 28(10):1850028. PubMed ID: 30105920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces.
    Chang MH; Baek HJ; Lee SM; Park KS
    Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A gaze independent hybrid-BCI based on visual spatial attention.
    Egan JM; Loughnane GM; Fletcher H; Meade E; Lalor EC
    J Neural Eng; 2017 Aug; 14(4):046006. PubMed ID: 28513478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards an architecture of a hybrid BCI based on SSVEP-BCI and passive-BCI.
    Cotrina A; Benevides A; Ferreira A; Bastos T; Castillo J; Menezes ML; Pereira C
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1342-5. PubMed ID: 25570215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI.
    Chang MH; Lee JS; Heo J; Park KS
    J Neurosci Methods; 2016 Jan; 258():104-13. PubMed ID: 26561770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses.
    Baek HJ; Kim HS; Heo J; Lim YG; Park KS
    J Neural Eng; 2013 Apr; 10(2):024001. PubMed ID: 23448913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.