These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 34425568)

  • 1. Directional energy transport in strongly coupled chiral quantum emitter plasmonic nanostructures.
    Gettapola K; Gunapala SD; Premaratne M
    J Phys Condens Matter; 2021 Sep; 33(47):. PubMed ID: 34425568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong plasmon-exciton coupling in transition metal dichalcogenides and plasmonic nanostructures.
    Sun J; Li Y; Hu H; Chen W; Zheng D; Zhang S; Xu H
    Nanoscale; 2021 Mar; 13(8):4408-4419. PubMed ID: 33605947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of quantum emitter-plasmon strong coupling and energy transport with external electrostatic fields.
    Gettapola K; Hapuarachchi H; Stockman MI; Premaratne M
    J Phys Condens Matter; 2020 Mar; 32(12):125301. PubMed ID: 31770745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chiral light-matter interactions using spin-valley states in transition metal dichalcogenides.
    Yang Z; Aghaeimeibodi S; Waks E
    Opt Express; 2019 Jul; 27(15):21367-21379. PubMed ID: 31510216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spin angular momentum-encoded single-photon emitters in a chiral nanoparticle-coupled WSe
    Lee SJ; So JP; Kim RM; Kim KH; Rha HH; Na G; Han JH; Jeong KY; Nam KT; Park HG
    Sci Adv; 2024 May; 10(21):eadn7210. PubMed ID: 38787944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beaming circularly polarized photons from quantum dots coupled with plasmonic spiral antenna.
    Rui G; Chen W; Abeysinghe DC; Nelson RL; Zhan Q
    Opt Express; 2012 Aug; 20(17):19297-304. PubMed ID: 23038571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic Exciton-Plasmon Coupling in a Nanocavity Beyond the Electromagnetic Interaction Picture.
    Babaze A; Esteban R; Borisov AG; Aizpurua J
    Nano Lett; 2021 Oct; 21(19):8466-8473. PubMed ID: 34529442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Chiral Light-Matter Interactions in a Waveguide-Coupled Nanocavity.
    Hallett D; Foster AP; Whittaker D; Skolnick MS; Wilson LR
    ACS Photonics; 2022 Feb; 9(2):706-713. PubMed ID: 35434181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring plasmonic effect on exciton transport: A theoretical insight from macroscopic quantum electrodynamics.
    Weng SH; Hsu LY; Ding W
    J Chem Phys; 2023 Oct; 159(15):. PubMed ID: 37843060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA-Enabled Chiral Gold Nanoparticle-Chromophore Hybrid Structure with Resonant Plasmon-Exciton Coupling Gives Unusual and Strong Circular Dichroism.
    Lan X; Zhou X; McCarthy LA; Govorov AO; Liu Y; Link S
    J Am Chem Soc; 2019 Dec; 141(49):19336-19341. PubMed ID: 31724853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electromagnetic Energy Redistribution in Coupled Chiral Particle Chain-Film System.
    Tang Y; Huang Y; Qv L; Fang Y
    Nanoscale Res Lett; 2018 Jul; 13(1):194. PubMed ID: 29978337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orientation-Dependent Exciton-Plasmon Coupling in Embedded Organic/Metal Nanowire Heterostructures.
    Li YJ; Hong Y; Peng Q; Yao J; Zhao YS
    ACS Nano; 2017 Oct; 11(10):10106-10112. PubMed ID: 28930431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magneto-Optical Chirality in a Coherently Coupled Exciton-Plasmon System.
    Vadia S; Scherzer J; Watanabe K; Taniguchi T; Högele A
    Nano Lett; 2023 Jan; 23(2):614-618. PubMed ID: 36617344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective far-field addressing of coupled quantum dots in a plasmonic nanocavity.
    Tang J; Xia J; Fang M; Bao F; Cao G; Shen J; Evans J; He S
    Nat Commun; 2018 Apr; 9(1):1705. PubMed ID: 29704002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plexcitonic Optical Chirality: Strong Exciton-Plasmon Coupling in Chiral J-Aggregate-Metal Nanoparticle Complexes.
    Wu F; Guo J; Huang Y; Liang K; Jin L; Li J; Deng X; Jiao R; Liu Y; Zhang J; Zhang W; Yu L
    ACS Nano; 2021 Feb; 15(2):2292-2300. PubMed ID: 33356158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear plasmon-exciton coupling enhances sum-frequency generation from a hybrid metal/semiconductor nanostructure.
    Zhong JH; Vogelsang J; Yi JM; Wang D; Wittenbecher L; Mikaelsson S; Korte A; Chimeh A; Arnold CL; Schaaf P; Runge E; Huillier AL; Mikkelsen A; Lienau C
    Nat Commun; 2020 Mar; 11(1):1464. PubMed ID: 32193407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong Spin-Orbit Interaction of Light in Plasmonic Nanostructures and Nanocircuits.
    Pan D; Wei H; Gao L; Xu H
    Phys Rev Lett; 2016 Oct; 117(16):166803. PubMed ID: 27792373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resolving single plasmons generated by multiquantum-emitters on a silver nanowire.
    Li Q; Wei H; Xu H
    Nano Lett; 2014 Jun; 14(6):3358-63. PubMed ID: 24844583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermalization and cooling of plasmon-exciton polaritons: towards quantum condensation.
    Rodriguez SR; Feist J; Verschuuren MA; Garcia Vidal FJ; Gómez Rivas J
    Phys Rev Lett; 2013 Oct; 111(16):166802. PubMed ID: 24182291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.