These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 34425882)
1. INFIMA leverages multi-omics model organism data to identify effector genes of human GWAS variants. Dong C; Simonett SP; Shin S; Stapleton DS; Schueler KL; Churchill GA; Lu L; Liu X; Jin F; Li Y; Attie AD; Keller MP; Keleş S Genome Biol; 2021 Aug; 22(1):241. PubMed ID: 34425882 [TBL] [Abstract][Full Text] [Related]
2. Integration of genetic fine-mapping and multi-omics data reveals candidate effector genes for hypertension. van Duijvenboden S; Ramírez J; Young WJ; Olczak KJ; Ahmed F; Alhammadi MJAY; ; Bell CG; Morris AP; Munroe PB Am J Hum Genet; 2023 Oct; 110(10):1718-1734. PubMed ID: 37683633 [TBL] [Abstract][Full Text] [Related]
3. Genetic regulatory signatures underlying islet gene expression and type 2 diabetes. Varshney A; Scott LJ; Welch RP; Erdos MR; Chines PS; Narisu N; Albanus RD; Orchard P; Wolford BN; Kursawe R; Vadlamudi S; Cannon ME; Didion JP; Hensley J; Kirilusha A; ; Bonnycastle LL; Taylor DL; Watanabe R; Mohlke KL; Boehnke M; Collins FS; Parker SC; Stitzel ML Proc Natl Acad Sci U S A; 2017 Feb; 114(9):2301-2306. PubMed ID: 28193859 [TBL] [Abstract][Full Text] [Related]
4. Integrative analysis of liver-specific non-coding regulatory SNPs associated with the risk of coronary artery disease. Selvarajan I; Toropainen A; Garske KM; López Rodríguez M; Ko A; Miao Z; Kaminska D; Õunap K; Örd T; Ravindran A; Liu OH; Moreau PR; Jawahar Deen A; Männistö V; Pan C; Levonen AL; Lusis AJ; Heikkinen S; Romanoski CE; Pihlajamäki J; Pajukanta P; Kaikkonen MU Am J Hum Genet; 2021 Mar; 108(3):411-430. PubMed ID: 33626337 [TBL] [Abstract][Full Text] [Related]
5. Predicting causal variants affecting expression by using whole-genome sequencing and RNA-seq from multiple human tissues. Brown AA; Viñuela A; Delaneau O; Spector TD; Small KS; Dermitzakis ET Nat Genet; 2017 Dec; 49(12):1747-1751. PubMed ID: 29058714 [TBL] [Abstract][Full Text] [Related]
6. Quantifying the mapping precision of genome-wide association studies using whole-genome sequencing data. Wu Y; Zheng Z; Visscher PM; Yang J Genome Biol; 2017 May; 18(1):86. PubMed ID: 28506277 [TBL] [Abstract][Full Text] [Related]
7. Chromatin accessibility and gene expression during adipocyte differentiation identify context-dependent effects at cardiometabolic GWAS loci. Perrin HJ; Currin KW; Vadlamudi S; Pandey GK; Ng KK; Wabitsch M; Laakso M; Love MI; Mohlke KL PLoS Genet; 2021 Oct; 17(10):e1009865. PubMed ID: 34699533 [TBL] [Abstract][Full Text] [Related]
8. Leveraging lung tissue transcriptome to uncover candidate causal genes in COPD genetic associations. Lamontagne M; Bérubé JC; Obeidat M; Cho MH; Hobbs BD; Sakornsakolpat P; de Jong K; Boezen HM; ; Nickle D; Hao K; Timens W; van den Berge M; Joubert P; Laviolette M; Sin DD; Paré PD; Bossé Y Hum Mol Genet; 2018 May; 27(10):1819-1829. PubMed ID: 29547942 [TBL] [Abstract][Full Text] [Related]
9. Strategies to identify causal common genetic variants and corresponding effector genes for paediatric obesity. Littleton SH; Grant SFA Pediatr Obes; 2022 Dec; 17(12):e12968. PubMed ID: 35971868 [TBL] [Abstract][Full Text] [Related]
10. iFunMed: Integrative functional mediation analysis of GWAS and eQTL studies. Rojo C; Zhang Q; Keleş S Genet Epidemiol; 2019 Oct; 43(7):742-760. PubMed ID: 31328826 [TBL] [Abstract][Full Text] [Related]
11. Identification of breast cancer associated variants that modulate transcription factor binding. Liu Y; Walavalkar NM; Dozmorov MG; Rich SS; Civelek M; Guertin MJ PLoS Genet; 2017 Sep; 13(9):e1006761. PubMed ID: 28957321 [TBL] [Abstract][Full Text] [Related]
12. A Multi-omic Integrative Scheme Characterizes Tissues of Action at Loci Associated with Type 2 Diabetes. Torres JM; Abdalla M; Payne A; Fernandez-Tajes J; Thurner M; Nylander V; Gloyn AL; Mahajan A; McCarthy MI Am J Hum Genet; 2020 Dec; 107(6):1011-1028. PubMed ID: 33186544 [TBL] [Abstract][Full Text] [Related]
14. Genome-wide association study implicates novel loci and reveals candidate effector genes for longitudinal pediatric bone accrual. Cousminer DL; Wagley Y; Pippin JA; Elhakeem A; Way GP; Pahl MC; McCormack SE; Chesi A; Mitchell JA; Kindler JM; Baird D; Hartley A; Howe L; Kalkwarf HJ; Lappe JM; Lu S; Leonard ME; Johnson ME; Hakonarson H; Gilsanz V; Shepherd JA; Oberfield SE; Greene CS; Kelly A; Lawlor DA; Voight BF; Wells AD; Zemel BS; Hankenson KD; Grant SFA Genome Biol; 2021 Jan; 22(1):1. PubMed ID: 33397451 [TBL] [Abstract][Full Text] [Related]
15. Enhancer-promoter interaction maps provide insights into skeletal muscle-related traits in pig genome. Li J; Xiang Y; Zhang L; Qi X; Zheng Z; Zhou P; Tang Z; Jin Y; Zhao Q; Fu Y; Zhao Y; Li X; Fu L; Zhao S BMC Biol; 2022 Jun; 20(1):136. PubMed ID: 35681201 [TBL] [Abstract][Full Text] [Related]
16. Probabilistic integration of transcriptome-wide association studies and colocalization analysis identifies key molecular pathways of complex traits. Okamoto J; Wang L; Yin X; Luca F; Pique-Regi R; Helms A; Im HK; Morrison J; Wen X Am J Hum Genet; 2023 Jan; 110(1):44-57. PubMed ID: 36608684 [TBL] [Abstract][Full Text] [Related]
17. Most brain disease-associated and eQTL haplotypes are not located within transcription factor DNase-seq footprints in brain. Handel AE; Gallone G; Zameel Cader M; Ponting CP Hum Mol Genet; 2017 Jan; 26(1):79-89. PubMed ID: 27798116 [TBL] [Abstract][Full Text] [Related]
18. Leveraging allelic imbalance to refine fine-mapping for eQTL studies. Zou J; Hormozdiari F; Jew B; Castel SE; Lappalainen T; Ernst J; Sul JH; Eskin E PLoS Genet; 2019 Dec; 15(12):e1008481. PubMed ID: 31834882 [TBL] [Abstract][Full Text] [Related]