These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34425917)

  • 21. Electrogastrography in adults and children: the strength, pitfalls, and clinical significance of the cutaneous recording of the gastric electrical activity.
    Riezzo G; Russo F; Indrio F
    Biomed Res Int; 2013; 2013():282757. PubMed ID: 23762836
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Entrainment of intestinal slow waves with electrical stimulation using intraluminal electrodes.
    Lin X; Hayes J; Peters LJ; Chen JD
    Ann Biomed Eng; 2000 May; 28(5):582-7. PubMed ID: 10925956
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-resolution electrical mapping of porcine gastric slow-wave propagation from the mucosal surface.
    Angeli TR; Du P; Paskaranandavadivel N; Sathar S; Hall A; Asirvatham SJ; Farrugia G; Windsor JA; Cheng LK; O'Grady G
    Neurogastroenterol Motil; 2017 May; 29(5):. PubMed ID: 28035728
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrogastrography: methodology, validation and applications.
    Yin J; Chen JD
    J Neurogastroenterol Motil; 2013 Jan; 19(1):5-17. PubMed ID: 23350042
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection of gastric slow oscillatory contraction using parasagittal cine MR images: Comparison with simultaneously measured electrogastrogram.
    Kaneoke Y; Donishi T; Terada M
    Magn Reson Imaging; 2021 Jan; 75():149-155. PubMed ID: 33137456
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of pacing parameters to entrain slow wave activity in the pig jejunum.
    Nagahawatte ND; Avci R; Paskaranandavadivel N; Cheng LK
    Sci Rep; 2024 Mar; 14(1):6038. PubMed ID: 38472365
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent progress in gastric arrhythmia: pathophysiology, clinical significance and future horizons.
    O'Grady G; Wang TH; Du P; Angeli T; Lammers WJ; Cheng LK
    Clin Exp Pharmacol Physiol; 2014 Oct; 41(10):854-62. PubMed ID: 25115692
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-channel wireless mapping of gastrointestinal serosal slow wave propagation.
    Paskaranandavadivel N; Wang R; Sathar S; O'Grady G; Cheng LK; Farajidavar A
    Neurogastroenterol Motil; 2015 Apr; 27(4):580-5. PubMed ID: 25599978
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Robust Methods to Detect Abnormal Initiation in the Gastric Slow Wave from Cutaneous Recordings.
    Agrusa AS; Allegra AB; Kunkel DC; Coleman TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():225-231. PubMed ID: 33017970
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimization of Gastric Pacing Parameters Using High-Resolution Mapping.
    Alighaleh S; Cheng LK; Angeli-Gordon TR; O'Grady G; Paskaranandavadivel N
    IEEE Trans Biomed Eng; 2023 Oct; 70(10):2964-2971. PubMed ID: 37130253
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wireless Pacing Using an Asynchronous Three-Tiered Inductive Power Transfer System.
    Abiri P; Abiri A; Gudapati V; Chang CC; Roustaei M; Bourenane H; Anwar U; Markovic D; Hsiai TK
    Ann Biomed Eng; 2020 Apr; 48(4):1368-1381. PubMed ID: 31974869
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accuracy of cutaneous recordings of gastric electrical activity.
    Mintchev MP; Kingma YJ; Bowes KL
    Gastroenterology; 1993 May; 104(5):1273-80. PubMed ID: 8482441
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A fully implantable pacemaker for the mouse: from battery to wireless power.
    Laughner JI; Marrus SB; Zellmer ER; Weinheimer CJ; MacEwan MR; Cui SX; Nerbonne JM; Efimov IR
    PLoS One; 2013; 8(10):e76291. PubMed ID: 24194832
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-invasive electrogastrography. Part 1: Correlation between the gastric electrical activity in dogs with implanted and cutaneous electrodes.
    Atanassova E; Daskalov I; Dotsinsky I; Christov I; Atanassova A
    Arch Physiol Biochem; 1995 Aug; 103(4):431-5. PubMed ID: 8548478
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrogastrography.
    Rossi Z; Forlini G; Fenderico P; Cipolla R; Nasoni S
    Eur Rev Med Pharmacol Sci; 2005; 9(5 Suppl 1):29-35. PubMed ID: 16457127
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of high-frequency gastric electrical stimulation on gastric myoelectric activity in gastroparetic patients.
    Lin Z; Forster J; Sarosiek I; McCallum RW
    Neurogastroenterol Motil; 2004 Apr; 16(2):205-12. PubMed ID: 15086874
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gastric electrical stimulation in patients with gastroparesis.
    Chen JD; Lin Z; McCALLUM RW
    J Gastroenterol Hepatol; 1998 Nov; 13(S3):S232-S236. PubMed ID: 28976676
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial response of jejunal pacing defined by a novel high-resolution multielectrode array.
    Nagahawatte ND; Avci R; Paskaranandavadivel N; Angeli-Gordon TR; Cheng LK
    Am J Physiol Gastrointest Liver Physiol; 2023 May; 324(5):G329-G340. PubMed ID: 36809176
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of surface gastric pacing on gastric myoelectrical activity and plasma motilin in a canine model of gastric motility disorders.
    Yang M; Fang DC; Wang RQ; Yang SM; Long QL; Li QW; Sun NX; Gan L
    Chin J Dig Dis; 2004; 5(2):56-63. PubMed ID: 15612658
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of innovative techniques for the endoscopic implantation and securing of a novel, wireless, miniature gastrostimulator (with videos).
    Deb S; Tang SJ; Abell TL; McLawhorn T; Huang WD; Lahr C; To SD; Easter J; Chiao JC
    Gastrointest Endosc; 2012 Jul; 76(1):179-84. PubMed ID: 22726478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.