BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 3442625)

  • 1. Hydroxy[14C]urea uptake by normal and transformed human cells: evidence for a mechanism of passive diffusion.
    Tagger AY; Boux J; Wright JA
    Biochem Cell Biol; 1987 Nov; 65(11):925-9. PubMed ID: 3442625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that the antitumor agent hydroxyurea enters mammalian cells by a diffusion mechanism.
    Morgan JS; Creasey DC; Wright JA
    Biochem Biophys Res Commun; 1986 Feb; 134(3):1254-9. PubMed ID: 3753869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anti-human immunodeficiency virus type 1 agent alpha-hydroxy glycineamide enters the target cells via a mechanism of passive diffusion.
    Youssefi M; Vahlne A
    J Pharm Pharmacol; 2014 Oct; 66(10):1388-93. PubMed ID: 24780097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of methionine adenosyltransferase in normal diploid and simian virus 40-transformed human fibroblasts.
    Jacobsen SJ; Hoffman RM; Erbe RW
    J Natl Cancer Inst; 1980 Dec; 65(6):1237-44. PubMed ID: 6253712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of uptake of nitrosoureas by L5178Y lymphoblasts in vitro.
    Begleiter A; Lam HP; Goldenberg GJ
    Cancer Res; 1977 Apr; 37(4):1022-7. PubMed ID: 557367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hexose transport in normal and SV40-transformed human endothelial cells in culture.
    Corkey RF; Corkey BE; Gimbrone MA
    J Cell Physiol; 1981 Mar; 106(3):425-34. PubMed ID: 6260823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective inhibition by benzaldehyde of the uptake of nucleosides and sugar into simian virus 40-transformed cells.
    Watanuki M; Sakaguchi K
    Cancer Res; 1980 Jul; 40(7):2574-9. PubMed ID: 6248209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excision repair in xeroderma pigmentosum group C cells is regulated differently in transformed cells and primary fibroblasts.
    Cleaver JE
    Biochem Biophys Res Commun; 1988 Oct; 156(1):557-62. PubMed ID: 2845984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progress of aging in human diploid cells transformed with a tsA mutant of simian virus 40.
    Ide T; Tsuji Y; Nakashima T; Ishibashi S
    Exp Cell Res; 1984 Feb; 150(2):321-8. PubMed ID: 6319164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction in the amount of 8-hydroxy-2'-deoxyguanosine in the DNA of SV40-transformed human fibroblasts as compared with normal cells in culture.
    Barciszewski J; Rattan SI; Siboska GE; Otzen DE; Clark BF
    FEBS Lett; 1993 Mar; 318(2):186-8. PubMed ID: 8382629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Representation of mRNA sequences in normal and SV40 transformed human diploid fibroblasts.
    Shephard EA; Jansing RL; Phillips IR; Stein JL; Stein GS
    Anticancer Res; 1981; 1(2):89-92. PubMed ID: 6287906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of temperature on normal and SV40-transformed human fibroblasts.
    Hara H; Lamon KD; Kaji H
    Biochim Biophys Acta; 1981 Feb; 673(1):37-45. PubMed ID: 6258653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SV40-transformed human cells fail to grow in zinc concentrations which permit normal human fibroblast proliferation.
    Epstein J
    J Cell Physiol; 1982 Jan; 110(1):17-22. PubMed ID: 6279677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitogenic and antimitogenic transforming growth factors secreted by adenovirus 2- and simian virus 40-transformed hamster cells: possible roles in promoting tumorigenesis.
    Akagi K; Murai K; Haddada H; Levine AS; Patch CT
    Cancer Res; 1987 Aug; 47(15):4086-92. PubMed ID: 3038307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of AAV Rep proteins in SV40-transformed and untransformed cells: reciprocal interaction with host DNA synthesis.
    Batchu RB; Shammas MA; Wang JY; Shmookler Reis RJ; Munshi NC
    Intervirology; 2001; 44(5):298-305. PubMed ID: 11684891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SV40-transformed human diploid cells that remain transformed throughout their limited lifespan.
    Gotoh S; Gelb L; Schlessinger D
    J Gen Virol; 1979 Feb; 42(2):409-14. PubMed ID: 217965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. D-glucose transport by membrane vesicles from quiescent, serum-stimulated, and SV40-transformed mouse 3T3 cells.
    Connell ND; Romano AH
    Biochim Biophys Acta; 1983 Apr; 729(2):267-74. PubMed ID: 6299353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virus shedding by SV40-transformed human cells.
    Lomax CA; Thirion JP; Bourgaux-Ramoisy D
    Intervirology; 1978; 9(1):39-47. PubMed ID: 202570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism and kinetics of chromate transport in human platelets.
    Tsukada T; Steiner M; Baldini M
    Am J Physiol; 1971 Dec; 221(6):1697-705. PubMed ID: 5124313
    [No Abstract]   [Full Text] [Related]  

  • 20. SV40-transformed human fibroblasts: evidence for cellular aging in pre-crisis cells.
    Stein GH
    J Cell Physiol; 1985 Oct; 125(1):36-44. PubMed ID: 2995426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.