These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 34426282)
1. Adsorptive removal of organic pollutant methylene blue using polysaccharide-based composite hydrogels. Sivakumar R; Lee NY Chemosphere; 2022 Jan; 286(Pt 3):131890. PubMed ID: 34426282 [TBL] [Abstract][Full Text] [Related]
2. Synthesis, characterization, and methylene blue adsorption of multiple-responsive hydrogels loaded with Huangshui polysaccharides, polyvinyl alcohol, and sodium carboxyl methyl cellulose. Wu Z; Liao Q; Chen P; Zhao D; Huo J; An M; Li Y; Wu J; Xu Z; Sun B; Huang M Int J Biol Macromol; 2022 Sep; 216():157-171. PubMed ID: 35780922 [TBL] [Abstract][Full Text] [Related]
3. Chitosan-based dual network composite hydrogel for efficient adsorption of methylene blue dye. Wan X; Rong Z; Zhu K; Wu Y Int J Biol Macromol; 2022 Dec; 222(Pt A):725-735. PubMed ID: 36174861 [TBL] [Abstract][Full Text] [Related]
4. A sustainable process for adsorptive removal of methylene blue onto a food grade mucilage: kinetics, thermodynamics, and equilibrium evaluation. Mijinyawa AH; Durga G; Mishra A Int J Phytoremediation; 2019; 21(11):1122-1129. PubMed ID: 31056928 [TBL] [Abstract][Full Text] [Related]
5. Preparation of hemicellulose-based hydrogels from biomass refining industrial effluent for effective removal of methylene blue dye. Hu N; Chen D; Guan Q; Peng L; Zhang J; He L; Shi Y Environ Technol; 2022 Jan; 43(4):489-499. PubMed ID: 32657263 [TBL] [Abstract][Full Text] [Related]
6. Polysaccharide-Based Composite Hydrogels as Sustainable Materials for Removal of Pollutants from Wastewater. Ghiorghita CA; Dinu MV; Lazar MM; Dragan ES Molecules; 2022 Dec; 27(23):. PubMed ID: 36500664 [TBL] [Abstract][Full Text] [Related]
7. Agar/κ-carrageenan composite hydrogel adsorbent for the removal of Methylene Blue from water. Duman O; Polat TG; Diker CÖ; Tunç S Int J Biol Macromol; 2020 Oct; 160():823-835. PubMed ID: 32470588 [TBL] [Abstract][Full Text] [Related]
8. Polysaccharide-Based Hydrogels Derived from Cellulose: The Architecture Change from Nanofibers to Hydrogels for a Putative Dual Function in Dye Wastewater Treatment. Cai J; Zhang D; Xu W; Ding WP; Zhu ZZ; He JR; Cheng SY J Agric Food Chem; 2020 Sep; 68(36):9725-9732. PubMed ID: 32786859 [TBL] [Abstract][Full Text] [Related]
9. Methylene blue removal by using pectin-based hydrogels extracted from dragon fruit peel waste using gamma and microwave radiation polymerization techniques. Abdullah MF; Azfaralariff A; Lazim AM J Biomater Sci Polym Ed; 2018 Oct; 29(14):1745-1763. PubMed ID: 29989528 [TBL] [Abstract][Full Text] [Related]
10. Clearance of methylene blue by CdS enhanced composite hydrogel materials. Chen L; He C; Yin J; Chen S; Zhao W; Zhao C Environ Technol; 2022 Jan; 43(3):355-366. PubMed ID: 32579426 [TBL] [Abstract][Full Text] [Related]
11. Nigella sativa seed based nanohybrid composite-Fe Siddiqui SI; Zohra F; Chaudhry SA Environ Res; 2019 Nov; 178():108667. PubMed ID: 31454728 [TBL] [Abstract][Full Text] [Related]
12. BiFeO Krishnamoorthy M; Ahmad NH; Amran HN; Mohamed MA; Kaus NHM; Yusoff SFM Int J Biol Macromol; 2021 Jul; 182():1495-1506. PubMed ID: 34019924 [TBL] [Abstract][Full Text] [Related]
13. Comparison of the adsorption behaviors for methylene blue on two renewable gels with different physical state. Qiu J; Fan P; Feng Y; Liu F; Ling C; Li A Environ Pollut; 2019 Nov; 254(Pt B):113117. PubMed ID: 31476673 [TBL] [Abstract][Full Text] [Related]
14. Chitosan-based composite hydrogel with a rigid-in-flexible network structure for pH-universal ultra-efficient removal of dye. Ma W; Liu X; Lu H; He Q; Ding K; Wang X; Wang W; Guo F Int J Biol Macromol; 2023 Jun; 241():124579. PubMed ID: 37105247 [TBL] [Abstract][Full Text] [Related]
15. Facilitative capture of As(V), Pb(II) and methylene blue from aqueous solutions with MgO hybrid sponge-like carbonaceous composite derived from sugarcane leafy trash. Li R; Liang W; Wang JJ; Gaston LA; Huang D; Huang H; Lei S; Awasthi MK; Zhou B; Xiao R; Zhang Z J Environ Manage; 2018 Apr; 212():77-87. PubMed ID: 29428656 [TBL] [Abstract][Full Text] [Related]
16. Eco-friendly and biocompatible cross-linked carboxymethylcellulose hydrogels as adsorbents for the removal of organic dye pollutants for environmental applications. Capanema NSV; Mansur AAP; Mansur HS; de Jesus AC; Carvalho SM; Chagas P; de Oliveira LC Environ Technol; 2018 Nov; 39(22):2856-2872. PubMed ID: 28805161 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and characterization of magnetic clay-based carboxymethyl cellulose-acrylic acid hydrogel nanocomposite for methylene blue dye removal from aqueous solution. Malatji N; Makhado E; Ramohlola KE; Modibane KD; Maponya TC; Monama GR; Hato MJ Environ Sci Pollut Res Int; 2020 Dec; 27(35):44089-44105. PubMed ID: 32761344 [TBL] [Abstract][Full Text] [Related]
18. Effects of the oxidation degree of graphene oxide on the adsorption of methylene blue. Yan H; Tao X; Yang Z; Li K; Yang H; Li A; Cheng R J Hazard Mater; 2014 Mar; 268():191-8. PubMed ID: 24491443 [TBL] [Abstract][Full Text] [Related]
19. Removal of methylene blue dye from aqueous solution by adsorption onto sodium humate/polyacrylamide/clay hybrid hydrogels. Yi JZ; Zhang LM Bioresour Technol; 2008 May; 99(7):2182-6. PubMed ID: 17601732 [TBL] [Abstract][Full Text] [Related]
20. Recent developments of polysaccharide based superabsorbent nanocomposite for organic dye contamination removal from wastewater - A review. Pandey S; Makhado E; Kim S; Kang M Environ Res; 2023 Jan; 217():114909. PubMed ID: 36455632 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]