BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 34426285)

  • 21. Oxygen reduction reaction activity and the microbial community in response to magnetite coordinating nitrogen-doped carbon catalysts in bioelectrochemical systems.
    Zhou H; Yang Y; You S; Liu B; Ren N; Xing D
    Biosens Bioelectron; 2018 Dec; 122():113-120. PubMed ID: 30245323
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sulfonated graphene oxide and titanium dioxide coated with nanostructured polyaniline nanocomposites as an efficient cathode catalyst in microbial fuel cells.
    Papiya F; Pattanayak P; Kumar V; Das S; Kundu PP
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110498. PubMed ID: 31924014
    [TBL] [Abstract][Full Text] [Related]  

  • 23.
    Wang G; Xu X; Kou X; Liu X; Dong X; Ma H; Wang D
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):51312-51320. PubMed ID: 34672529
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Co-Doped Zeolite-GO Nanocomposite as a High-Performance ORR Catalyst for Sustainable Bioelectricity Generation in Air-Cathode Single-Chambered Microbial Fuel Cells.
    Chaturvedi A; Kundu PP
    ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35839174
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving oxygen reduction reaction by cobalt iron-layered double hydroxide layer on nickel-metal organic framework as cathode catalyst in microbial fuel cell.
    Zhang X; Xu Y; Liu Y; Wei Y; Lan F; Wang J; Liu X; Wang R; Yang Y; Chen J
    Bioresour Technol; 2024 Jan; 392():130011. PubMed ID: 37956946
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NiCo Alloy Nanoparticles on a N/C Dual-Doped Matrix as a Cathode Catalyst for Improved Microbial Fuel Cell Performance.
    Huang S; Geng Y; Xia J; Chen D; Lu J
    Small; 2022 Feb; 18(7):e2106355. PubMed ID: 34874624
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Salt-induced silk gel-derived N and trace Fe co-doped 3D porous carbon as an oxygen reduction catalyst in microbial fuel cells.
    Liu J; Wei L; Cao C; Zhang F; Lang F; Wang H; Yang H; Shen J
    Nanoscale; 2019 Jul; 11(28):13431-13439. PubMed ID: 31281907
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of pyridine-2-carbaldehyde thiosemicarbazone as an anti-biofouling cathodic agent in microbial fuel cell.
    Pandit S; Khanna S; Mathuriya AS
    Appl Microbiol Biotechnol; 2023 Jan; 107(1):459-472. PubMed ID: 36418541
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Xerogel based catalyst for improved cathode performance in microbial fuel cells.
    Thapa BS; Seetharaman S; Chetty R; Chandra TS
    Enzyme Microb Technol; 2019 May; 124():1-8. PubMed ID: 30797474
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and study of CuNiTiO
    Rezaei A; Aber S; Roberts DJ; Javid Ga A
    Chemosphere; 2022 Nov; 307(Pt 1):135709. PubMed ID: 35843431
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancing substrate utilization and power production of a microbial fuel cell with nitrogen-doped carbon aerogel as cathode catalyst.
    Tardy GM; Lóránt B; Lóka M; Nagy B; László K
    Biotechnol Lett; 2017 Jul; 39(7):993-999. PubMed ID: 28378070
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bimetallic CoSn nanoparticles anchored on N-doped carbon as antibacterial oxygen reduction catalysts for microbial fuel cells.
    Li L; Liu Z; Jiang D; Song M; Wang Y
    Nanoscale; 2023 Oct; 15(38):15739-15748. PubMed ID: 37740420
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-Performance Carbon Aerogel Air Cathodes for Microbial Fuel Cells.
    Zhang X; He W; Zhang R; Wang Q; Liang P; Huang X; Logan BE; Fellinger TP
    ChemSusChem; 2016 Oct; 9(19):2788-2795. PubMed ID: 27509893
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sewage sludge-derived carbon-doped manganese as efficient cathode catalysts in microbial fuel cells.
    Huang J; Feng H; Jia Y; Shen D; Xu Y
    Water Sci Technol; 2019 Oct; 80(8):1399-1406. PubMed ID: 31961802
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced oxygen reduction upon Ag-Fe-doped polyacrylonitrile@UiO-66-NH
    Sun Y; Li H; Wang J; Liu Y; Guo S; Xie H; Li C
    J Colloid Interface Sci; 2023 Oct; 648():654-663. PubMed ID: 37321084
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hollow N-doped bimetal carbon spheres with superior ORR catalytic performance for microbial fuel cells.
    Wang H; Wei L; Liu J; Shen J
    J Colloid Interface Sci; 2020 Sep; 575():177-182. PubMed ID: 32361234
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Current status, key challenges and its solutions in the design and development of graphene based ORR catalysts for the microbial fuel cell applications.
    Kannan MV; Gnana Kumar G
    Biosens Bioelectron; 2016 Mar; 77():1208-20. PubMed ID: 26606182
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tubular nitrogen-doped carbon materials derived from green foxtail as a metal-free electrocatalyst in microbial fuel cells for efficient electron generation.
    Wang X; Gong X; Peng L; Yang Z; Liu Y
    Bioelectrochemistry; 2019 Jun; 127():104-112. PubMed ID: 30797134
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Performance evaluation of poly(aniline-co-pyrrole) wrapped titanium dioxide nanocomposite as an air-cathode catalyst material for microbial fuel cell.
    Pattanayak P; Papiya F; Kumar V; Singh A; Kundu PP
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111492. PubMed ID: 33255059
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Graphene and biochar-based cathode catalysts for microbial fuel cell: Performance evaluation, economic comparison, environmental and future perspectives.
    Dhanda A; Raj R; Sathe SM; Dubey BK; Ghangrekar MM
    Environ Res; 2023 Aug; 231(Pt 2):116143. PubMed ID: 37187304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.