These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 34426344)
1. Metal-based flocculation to harvest microalgae: a look beyond separation efficiency. Rossi S; Visigalli S; Castillo Cascino F; Mantovani M; Mezzanotte V; Parati K; Canziani R; Turolla A; Ficara E Sci Total Environ; 2021 Dec; 799():149395. PubMed ID: 34426344 [TBL] [Abstract][Full Text] [Related]
2. Environmental evaluation of flocculation efficiency in the separation of the microalgal biomass of Scenedesmus sp. cultivated in full-scale photobioreactors. Scherer MD; Filho FJCM; Oliveira AC; Selesu NFH; Ugaya CML; Mariano AB; Vargas JVC J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018 Aug; 53(10):938-945. PubMed ID: 29764286 [TBL] [Abstract][Full Text] [Related]
3. Experimental studies on zeta potential of flocculants for harvesting of algae. Pandey A; Pathak VV; Kothari R; Black PN; Tyagi VV J Environ Manage; 2019 Feb; 231():562-569. PubMed ID: 30388653 [TBL] [Abstract][Full Text] [Related]
4. Influence of starch on microalgal biomass recovery, settleability and biogas production. Gutiérrez R; Ferrer I; García J; Uggetti E Bioresour Technol; 2015 Jun; 185():341-5. PubMed ID: 25795448 [TBL] [Abstract][Full Text] [Related]
5. Cationic starch: Safe and economic harvesting flocculant for microalgal biomass and inhibiting E. coli growth. El-Naggar ME; Samhan FA; Salama AAA; Hamdy RM; Ali GH Int J Biol Macromol; 2018 Sep; 116():1296-1303. PubMed ID: 29782981 [TBL] [Abstract][Full Text] [Related]
6. A comprehensive analysis of an effective flocculation method for high quality microalgal biomass harvesting. Labeeuw L; Commault AS; Kuzhiumparambil U; Emmerton B; Nguyen LN; Nghiem LD; Ralph PJ Sci Total Environ; 2021 Jan; 752():141708. PubMed ID: 32892040 [TBL] [Abstract][Full Text] [Related]
7. Effective harvesting of microalgae: Comparison of different polymeric flocculants. Gerchman Y; Vasker B; Tavasi M; Mishael Y; Kinel-Tahan Y; Yehoshua Y Bioresour Technol; 2017 Mar; 228():141-146. PubMed ID: 28061396 [TBL] [Abstract][Full Text] [Related]
8. Potential of biogenic and non-biogenic waste materials as flocculant for algal biomass harvesting: Mechanism, parameters, challenges and future prospects. Singh HM; Sharma M; Tyagi VV; Goria K; Buddhi D; Sharma A; Bruno F; Sheoran S; Kothari R J Environ Manage; 2023 Jul; 337():117591. PubMed ID: 36996549 [TBL] [Abstract][Full Text] [Related]
10. Cationic cassava starch and its composite as flocculants for microalgal biomass separation. Chittapun S; Jangyubol K; Charoenrat T; Piyapittayanun C; Kasemwong K Int J Biol Macromol; 2020 Oct; 161():917-926. PubMed ID: 32553968 [TBL] [Abstract][Full Text] [Related]
11. Effective harvesting of the microalgae Chlorella protothecoides via bioflocculation with cationic starch. Letelier-Gordo CO; Holdt SL; De Francisci D; Karakashev DB; Angelidaki I Bioresour Technol; 2014 Sep; 167():214-8. PubMed ID: 24983692 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of flocculants for the recovery of freshwater microalgae. Granados MR; Acién FG; Gómez C; Fernández-Sevilla JM; Molina Grima E Bioresour Technol; 2012 Aug; 118():102-10. PubMed ID: 22705512 [TBL] [Abstract][Full Text] [Related]
13. Harvesting of intact microalgae in single and sequential conditioning steps by chemical and biological based - flocculants: Effect on harvesting efficiency, water recovery and algal cell morphology. Shurair M; Almomani F; Bhosale R; Khraisheh M; Qiblawey H Bioresour Technol; 2019 Jun; 281():250-259. PubMed ID: 30825828 [TBL] [Abstract][Full Text] [Related]
14. Microalgae harvesting by pH adjusted coagulation-flocculation, recycling of the coagulant and the growth media. Das P; Thaher MI; Abdul Hakim MA; Al-Jabri HM; Alghasal GS Bioresour Technol; 2016 Sep; 216():824-9. PubMed ID: 27318160 [TBL] [Abstract][Full Text] [Related]
15. Microwave assisted flocculation for harvesting of Chlorella vulgaris. Liu W; Cui Y; Cheng P; Huo S; Ma X; Chen Q; Cobb K; Chen P; Ma J; Gao X; Ruan R Bioresour Technol; 2020 Oct; 314():123770. PubMed ID: 32652448 [TBL] [Abstract][Full Text] [Related]
16. The use of natural organic flocculants for harvesting microalgae grown in municipal wastewater at different culture densities. Niemi C; Gentili FG Physiol Plant; 2021 Oct; 173(2):536-542. PubMed ID: 33779990 [TBL] [Abstract][Full Text] [Related]
17. Single-step dynamic dewatering of microalgae from dilute suspensions using flocculant assisted filtration. Musa M; Ward A; Ayoko GA; Rösch C; Brown R; Rainey TJ Microb Cell Fact; 2020 Dec; 19(1):222. PubMed ID: 33276792 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of several flocculants for flocculating microalgae. Wu J; Liu J; Lin L; Zhang C; Li A; Zhu Y; Zhang Y Bioresour Technol; 2015 Dec; 197():495-501. PubMed ID: 26369279 [TBL] [Abstract][Full Text] [Related]
19. Cationic polymers for successful flocculation of marine microalgae. 't Lam GP; Vermuë MH; Olivieri G; van den Broek LAM; Barbosa MJ; Eppink MHM; Wijffels RH; Kleinegris DMM Bioresour Technol; 2014 Oct; 169():804-807. PubMed ID: 25113884 [TBL] [Abstract][Full Text] [Related]
20. Charge-tunable polymers as reversible and recyclable flocculants for the dewatering of microalgae. Morrissey KL; He C; Wong MH; Zhao X; Chapman RZ; Bender SL; Prevatt WD; Stoykovich MP Biotechnol Bioeng; 2015 Jan; 112(1):74-83. PubMed ID: 25060233 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]