These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 34426379)
1. Metal accumulation varies with life history, size, and development of larval amphibians. Smalling KL; Oja EB; Cleveland DM; Davenport JM; Eagles-Smith C; Campbell Grant EH; Kleeman PM; Halstead BJ; Stemp KM; Tornabene BJ; Bunnell ZJ; Hossack BR Environ Pollut; 2021 Oct; 287():117638. PubMed ID: 34426379 [TBL] [Abstract][Full Text] [Related]
2. Associations between environmental pollutants and larval amphibians in wetlands contaminated by energy-related brines are potentially mediated by feeding traits. Smalling KL; Anderson CW; Honeycutt RK; Cozzarelli IM; Preston T; Hossack BR Environ Pollut; 2019 May; 248():260-268. PubMed ID: 30798027 [TBL] [Abstract][Full Text] [Related]
3. Species- and stage-specific differences in trace element tissue concentrations in amphibians: implications for the disposal of coal-combustion wastes. Roe JH; Hopkins WA; Jackson BP Environ Pollut; 2005 Jul; 136(2):353-63. PubMed ID: 15840543 [TBL] [Abstract][Full Text] [Related]
4. Helminth community structure of sympatric eastern American toad, Bufo americanus americanus, northern leopard frog, Rana pipiens, and blue-spotted salamander, Ambystoma laterale, from southeastern Wisconsin. Bolek MG; Coggins JR J Parasitol; 2003 Aug; 89(4):673-80. PubMed ID: 14533672 [TBL] [Abstract][Full Text] [Related]
5. Relative acute toxicity of three per- and polyfluoroalkyl substances on nine species of larval amphibians. Tornabene BJ; Chislock MF; Gannon ME; Sepúlveda MS; Hoverman JT Integr Environ Assess Manag; 2021 Jul; 17(4):684-690. PubMed ID: 33448623 [TBL] [Abstract][Full Text] [Related]
6. Effects of competition and coal-combustion wastes on recruitment and life history characteristics of salamanders in temporary wetlands. Roe JH; Hopkins WA; Durant SE; Unrine JM Aquat Toxicol; 2006 Aug; 79(2):176-84. PubMed ID: 16842868 [TBL] [Abstract][Full Text] [Related]
7. Do effects of mercury in larval amphibians persist after metamorphosis? Todd BD; Willson JD; Bergeron CM; Hopkins WA Ecotoxicology; 2012 Jan; 21(1):87-95. PubMed ID: 21850489 [TBL] [Abstract][Full Text] [Related]
8. Metal levels in southern leopard frogs from the Savannah River Site: location and body compartment effects. Burger J; Snodgrass J Environ Res; 2001 Jun; 86(2):157-66. PubMed ID: 11437462 [TBL] [Abstract][Full Text] [Related]
9. Delayed effects and complex life cycles: How the larval aquatic environment influences terrestrial performance and survival. Rumrill CT; Scott DE; Lance SL Environ Toxicol Chem; 2018 Oct; 37(10):2660-2669. PubMed ID: 29984847 [TBL] [Abstract][Full Text] [Related]
10. The toxicity of Roundup Original Max to 13 species of larval amphibians. Relyea RA; Jones DK Environ Toxicol Chem; 2009 Sep; 28(9):2004-8. PubMed ID: 19405783 [TBL] [Abstract][Full Text] [Related]
11. Eye size and investment in frogs and toads correlate with adult habitat, activity pattern and breeding ecology. Thomas KN; Gower DJ; Bell RC; Fujita MK; Schott RK; Streicher JW Proc Biol Sci; 2020 Sep; 287(1935):20201393. PubMed ID: 32962540 [TBL] [Abstract][Full Text] [Related]
12. Variation in metal tolerance associated with population exposure history in Southern toads (Anaxyrus terrestris). Flynn RW; Love CN; Coleman A; Lance SL Aquat Toxicol; 2019 Feb; 207():163-169. PubMed ID: 30572176 [TBL] [Abstract][Full Text] [Related]
13. Acute toxicity of copper to the larval stage of three species of ambystomatid salamanders. Weir SM; Yu S; Scott DE; Lance SL Ecotoxicology; 2019 Nov; 28(9):1023-1031. PubMed ID: 31489592 [TBL] [Abstract][Full Text] [Related]
14. Anatomical features of Leiopelma embryos and larvae: implications for anuran evolution. Bell BD; Wassersug RJ J Morphol; 2003 May; 256(2):160-70. PubMed ID: 12635108 [TBL] [Abstract][Full Text] [Related]
15. Mercury accumulation along a contamination gradient and nondestructive indices of bioaccumulation in amphibians. Bergeron CM; Bodinof CM; Unrine JM; Hopkins WA Environ Toxicol Chem; 2010 Apr; 29(4):980-8. PubMed ID: 20821529 [TBL] [Abstract][Full Text] [Related]
16. Odonata larvae as a bioindicator of metal contamination in aquatic environments: application to ecologically important wetlands in Iran. Nasirian H; Irvine KN Environ Monit Assess; 2017 Sep; 189(9):436. PubMed ID: 28779428 [TBL] [Abstract][Full Text] [Related]
17. Aquatic and terrestrial stressors in amphibians: a test of the double jeopardy hypothesis based on maternally and trophically derived contaminants. Todd BD; Bergeron CM; Hepner MJ; Hopkins WA Environ Toxicol Chem; 2011 Oct; 30(10):2277-84. PubMed ID: 21755529 [TBL] [Abstract][Full Text] [Related]
18. Mercury bioaccumulation in northern two-lined salamanders from streams in the northeastern United States. Bank MS; Loftin CS; Jung RE Ecotoxicology; 2005 Mar; 14(1-2):181-91. PubMed ID: 15931966 [TBL] [Abstract][Full Text] [Related]
19. Variation in upper thermal tolerance among 19 species from temperate wetlands. Katzenberger M; Duarte H; Relyea R; Beltrán JF; Tejedo M J Therm Biol; 2021 Feb; 96():102856. PubMed ID: 33627284 [TBL] [Abstract][Full Text] [Related]
20. Do hormone-modulating chemicals impact on reproduction and development of wild amphibians? Orton F; Tyler CR Biol Rev Camb Philos Soc; 2015 Nov; 90(4):1100-17. PubMed ID: 25335651 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]