BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 34427346)

  • 1. A Huygens' surface approach to rapid characterization of peripheral nerve stimulation.
    Davids M; Guerin B; Wald LL
    Magn Reson Med; 2022 Jan; 87(1):377-393. PubMed ID: 34427346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of peripheral nerve stimulation thresholds of MRI gradient coils using coupled electromagnetic and neurodynamic simulations.
    Davids M; Guérin B; Vom Endt A; Schad LR; Wald LL
    Magn Reson Med; 2019 Jan; 81(1):686-701. PubMed ID: 30094874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity analysis of neurodynamic and electromagnetic simulation parameters for robust prediction of peripheral nerve stimulation.
    Klein V; Davids M; Wald LL; Schad LR; Guérin B
    Phys Med Biol; 2018 Dec; 64(1):015005. PubMed ID: 30523884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing selective stimulation of peripheral nerves with arrays of coils or surface electrodes using a linear peripheral nerve stimulation metric.
    Davids M; Guérin B; Klein V; Schmelz M; Schad LR; Wald LL
    J Neural Eng; 2020 Jan; 17(1):016029. PubMed ID: 31665707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peripheral nerve stimulation informed design of a high-performance asymmetric head gradient coil.
    Davids M; Dietz P; Ruyters G; Roesler M; Klein V; Guérin B; Feinberg DA; Wald LL
    Magn Reson Med; 2023 Aug; 90(2):784-801. PubMed ID: 37052387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental validation of a PNS-optimized whole-body gradient coil.
    Davids M; Vendramini L; Klein V; Ferris N; Guerin B; Wald LL
    Magn Reson Med; 2024 May; ():. PubMed ID: 38767407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting Magnetostimulation Thresholds in the Peripheral Nervous System using Realistic Body Models.
    Davids M; Guérin B; Malzacher M; Schad LR; Wald LL
    Sci Rep; 2017 Jul; 7(1):5316. PubMed ID: 28706244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electric field calculation and peripheral nerve stimulation prediction for head and body gradient coils.
    Roemer PB; Wade T; Alejski A; McKenzie CA; Rutt BK
    Magn Reson Med; 2021 Oct; 86(4):2301-2315. PubMed ID: 34080744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of MRI Gradient Coils With Explicit Peripheral Nerve Stimulation Constraints.
    Davids M; Guerin B; Klein V; Wald LL
    IEEE Trans Med Imaging; 2021 Jan; 40(1):129-142. PubMed ID: 32915730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimizing electric fields and increasing peripheral nerve stimulation thresholds using a body gradient array coil.
    Babaloo R; Atalar E
    Magn Reson Med; 2024 Sep; 92(3):1290-1305. PubMed ID: 38624032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hybrid FDTD/MoM algorithm with a conformal Huygens' equivalent surface for MRI RF coil design and analysis.
    Liu Y; Wang Q; Liu F
    Magn Reson Imaging; 2023 Oct; 102():1-8. PubMed ID: 36963640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of peripheral axon geometry and local anatomy on magnetostimulation chronaxie.
    Ferris NG; Klein V; Guerin B; Wald LL; Davids M
    J Neural Eng; 2024 Jun; 21(3):. PubMed ID: 38806036
    [No Abstract]   [Full Text] [Related]  

  • 13. Peripheral nerve stimulation limits of a high amplitude and slew rate magnetic field gradient coil for neuroimaging.
    Tan ET; Hua Y; Fiveland EW; Vermilyea ME; Piel JE; Park KJ; Ho VB; Foo TKF
    Magn Reson Med; 2020 Jan; 83(1):352-366. PubMed ID: 31385628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling-based Huygens' meta-atom utilizing bilayer complementary plasmonic structure for light manipulation.
    Liu T; Huang L; Hong W; Ling Y; Luan J; Sun Y; Sun W
    Opt Express; 2017 Jul; 25(14):16332-16346. PubMed ID: 28789139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peripheral nerve stimulation characteristics of an asymmetric head-only gradient coil compatible with a high-channel-count receiver array.
    Lee SK; Mathieu JB; Graziani D; Piel J; Budesheim E; Fiveland E; Hardy CJ; Tan ET; Amm B; Foo TK; Bernstein MA; Huston J; Shu Y; Schenck JF
    Magn Reson Med; 2016 Dec; 76(6):1939-1950. PubMed ID: 26628078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Closed Formalism for Anatomy-Independent Projection and Optimization of Magnetic Stimulation Coils on Arbitrarily Shaped Surfaces.
    Koehler M; Goetz SM
    IEEE Trans Biomed Eng; 2024 Jun; 71(6):1745-1755. PubMed ID: 38206785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hybrid FDTD/MoM algorithm with a non-uniform grid for MRI RF coil design.
    Liu Y; Wang Q; Liu F
    Magn Reson Imaging; 2023 Feb; 96():75-84. PubMed ID: 36265697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets.
    Pfeiffer C; Grbic A
    Phys Rev Lett; 2013 May; 110(19):197401. PubMed ID: 23705738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peripheral nerve stimulation properties of head and body gradient coils of various sizes.
    Zhang B; Yen YF; Chronik BA; McKinnon GC; Schaefer DJ; Rutt BK
    Magn Reson Med; 2003 Jul; 50(1):50-8. PubMed ID: 12815678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the induced electric field gradients in the human body for magnetic stimulation by gradient coils in MRI.
    Liu F; Zhao H; Crozier S
    IEEE Trans Biomed Eng; 2003 Jul; 50(7):804-15. PubMed ID: 12848348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.