These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 34428053)

  • 61. Chiral Plasmonics and Their Potential for Point-of-Care Biosensing Applications.
    Paiva-Marques WA; Reyes Gómez F; Oliveira ON; Mejía-Salazar JR
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32050725
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Ultrathin circular polarimeter based on chiral plasmonic metasurface and monolayer MoSe
    Jiang Q; Du B; Jiang M; Liu D; Liu Z; Li B; Liu Z; Lin F; Zhu X; Fang Z
    Nanoscale; 2020 Mar; 12(10):5906-5913. PubMed ID: 32104821
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Engineering DNA self-assemblies as templates for functional nanostructures.
    Wang ZG; Ding B
    Acc Chem Res; 2014 Jun; 47(6):1654-62. PubMed ID: 24588320
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Hot Electron Generation and Cathodoluminescence Nanoscopy of Chiral Split Ring Resonators.
    Fang Y; Verre R; Shao L; Nordlander P; Käll M
    Nano Lett; 2016 Aug; 16(8):5183-90. PubMed ID: 27464003
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Revealing the Chiroptical Response of Plasmonic Nanostructures at the Nanofemto Scale.
    Zu S; Sun Q; Cao E; Oshikiri T; Misawa H
    Nano Lett; 2021 Jun; 21(11):4780-4786. PubMed ID: 34048263
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Nanophotonic Platforms for Chiral Sensing and Separation.
    Solomon ML; Saleh AAE; Poulikakos LV; Abendroth JM; Tadesse LF; Dionne JA
    Acc Chem Res; 2020 Mar; 53(3):588-598. PubMed ID: 31913015
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Strong circular dichroism enhancement by plasmonic coupling between graphene and h-shaped chiral nanostructure.
    Wang Y; Dong J; Wang Z; Zhou S; Wang Q; Han Q; Gao W; Ren K; Qi J
    Opt Express; 2019 Nov; 27(23):33869-33879. PubMed ID: 31878446
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Three-dimensional structural imaging of starch granules by second-harmonic generation circular dichroism.
    Zhuo GY; Lee H; Hsu KJ; Huttunen MJ; Kauranen M; Lin YY; Chu SW
    J Microsc; 2014 Mar; 253(3):183-90. PubMed ID: 24392849
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Birefringence-Induced Modulation of Optical Activity in Chiral Plasmonic Helical Arrays.
    Jung A; Kim C; Yeom B
    J Phys Chem Lett; 2017 Apr; 8(8):1872-1877. PubMed ID: 28394612
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Enhanced circular dichroism of plasmonic chiral system due to indirect coupling of two unaligned nanorods with metal film.
    Li Y; Bai Y; Zhang Z; Abudukelimu A; Ren Y; Muhammad I; Li Q; Zhang Z
    Appl Opt; 2021 Aug; 60(23):6742-6747. PubMed ID: 34613151
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Liquid crystal-templated chiral nanomaterials: from chiral plasmonics to circularly polarized luminescence.
    Zhang X; Xu Y; Valenzuela C; Zhang X; Wang L; Feng W; Li Q
    Light Sci Appl; 2022 Jul; 11(1):223. PubMed ID: 35835737
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Geometric modulation of induced plasmonic circular dichroism in nanoparticle assemblies based on backaction and field enhancement.
    Bao ZY; Dai J; Zhang Q; Ho KH; Li S; Chan CH; Zhang W; Lei DY
    Nanoscale; 2018 Nov; 10(42):19684-19691. PubMed ID: 30328878
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Tracking the Growth of Chiral Plasmonic Nanocrystals at Molybdenum Disulfide Heterostructural Interfaces.
    Luo JJ; Zhang H; Zou HL; Luo HQ; Li NB; Li BL
    Langmuir; 2023 Feb; 39(8):3052-3061. PubMed ID: 36787386
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Giant circular dichroism enhancement and chiroptical illusion in hybrid molecule-plasmonic nanostructures.
    Liu Y; Wang R; Zhang X
    Opt Express; 2014 Feb; 22(4):4357-70. PubMed ID: 24663759
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Biomacromolecular Stereostructure Mediates Mode Hybridization in Chiral Plasmonic Nanostructures.
    Jack C; Karimullah AS; Leyman R; Tullius R; Rotello VM; Cooke G; Gadegaard N; Barron LD; Kadodwala M
    Nano Lett; 2016 Sep; 16(9):5806-14. PubMed ID: 27547978
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Chiral Plasmonic Nanochains via the Self-Assembly of Gold Nanorods and Helical Glutathione Oligomers Facilitated by Cetyltrimethylammonium Bromide Micelles.
    Lu J; Chang YX; Zhang NN; Wei Y; Li AJ; Tai J; Xue Y; Wang ZY; Yang Y; Zhao L; Lu ZY; Liu K
    ACS Nano; 2017 Apr; 11(4):3463-3475. PubMed ID: 28332821
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Circularly Polarized Light Triggers Biosensing Based on Chiral Assemblies.
    Hao C; Xu L; Sun M; Zhang H; Kuang H; Xu C
    Chemistry; 2019 Sep; 25(53):12235-12240. PubMed ID: 31209950
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Self-organization of plasmonic and excitonic nanoparticles into resonant chiral supraparticle assemblies.
    Hu T; Isaacoff BP; Bahng JH; Hao C; Zhou Y; Zhu J; Li X; Wang Z; Liu S; Xu C; Biteen JS; Kotov NA
    Nano Lett; 2014 Dec; 14(12):6799-810. PubMed ID: 25400100
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Attomolar DNA detection with chiral nanorod assemblies.
    Ma W; Kuang H; Xu L; Ding L; Xu C; Wang L; Kotov NA
    Nat Commun; 2013; 4():2689. PubMed ID: 24162144
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Conformation modulated optical activity enhancement in chiral cysteine and au nanorod assemblies.
    Han B; Zhu Z; Li Z; Zhang W; Tang Z
    J Am Chem Soc; 2014 Nov; 136(46):16104-7. PubMed ID: 25347381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.