These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 34428071)

  • 1. Atomic-Scale Structural Fluctuations of a Plasmonic Cavity.
    Rosławska A; Merino P; Grewal A; Leon CC; Kuhnke K; Kern K
    Nano Lett; 2021 Sep; 21(17):7221-7227. PubMed ID: 34428071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inelastic Light Scattering in the Vicinity of a Single-Atom Quantum Point Contact in a Plasmonic Picocavity.
    Liu S; Bonafe FP; Appel H; Rubio A; Wolf M; Kumagai T
    ACS Nano; 2023 Jun; 17(11):10172-10180. PubMed ID: 37183801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light Emission and Conductance Fluctuations in Electrically Driven and Plasmonically Enhanced Molecular Junctions.
    Amirtharaj SP; Xie Z; Si Yu See J; Rolleri G; Malchow K; Chen W; Bouhelier A; Lörtscher E; Galland C
    ACS Photonics; 2024 Jun; 11(6):2388-2396. PubMed ID: 38911841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dramatic Enhancement of Tip-Enhanced Raman Scattering Mediated by Atomic Point Contact Formation.
    Liu S; Cirera B; Sun Y; Hamada I; Müller M; Hammud A; Wolf M; Kumagai T
    Nano Lett; 2020 Aug; 20(8):5879-5884. PubMed ID: 32678605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locating Single-Atom Optical Picocavities Using Wavelength-Multiplexed Raman Scattering.
    Griffiths J; de Nijs B; Chikkaraddy R; Baumberg JJ
    ACS Photonics; 2021 Oct; 8(10):2868-2875. PubMed ID: 34692898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directional picoantenna behavior of tunnel junctions formed by an atomic-scale surface defect.
    Mateos D; Jover O; Varea M; Lauwaet K; Granados D; Miranda R; Fernandez-Dominguez AI; Martin-Jimenez A; Otero R
    Sci Adv; 2024 Sep; 10(39):eadn2295. PubMed ID: 39321296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-molecule optomechanics in "picocavities".
    Benz F; Schmidt MK; Dreismann A; Chikkaraddy R; Zhang Y; Demetriadou A; Carnegie C; Ohadi H; de Nijs B; Esteban R; Aizpurua J; Baumberg JJ
    Science; 2016 Nov; 354(6313):726-729. PubMed ID: 27846600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning Overbias Plasmon Energy and Intensity in Molecular Plasmonic Tunneling Junctions by Atomic Polarizability.
    Du W; Chen X; Wang T; Lin Q; Nijhuis CA
    J Am Chem Soc; 2024 Aug; 146(31):21642-21650. PubMed ID: 38940772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasmall Plasmonic Single Nanoparticle Light Source Driven by a Graphene Tunnel Junction.
    Namgung S; Mohr DA; Yoo D; Bharadwaj P; Koester SJ; Oh SH
    ACS Nano; 2018 Mar; 12(3):2780-2788. PubMed ID: 29498820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic Scale Plasmonic Switch.
    Emboras A; Niegemann J; Ma P; Haffner C; Pedersen A; Luisier M; Hafner C; Schimmel T; Leuthold J
    Nano Lett; 2016 Jan; 16(1):709-14. PubMed ID: 26670551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular hot electroluminescence due to strongly enhanced spontaneous emission rates in a plasmonic nanocavity.
    Chen G; Li XG; Zhang ZY; Dong ZC
    Nanoscale; 2015 Feb; 7(6):2442-9. PubMed ID: 25565003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomically localized plasmon enhancement in monolayer graphene.
    Zhou W; Lee J; Nanda J; Pantelides ST; Pennycook SJ; Idrobo JC
    Nat Nanotechnol; 2012 Jan; 7(3):161-5. PubMed ID: 22286496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic-Scale Lightning Rod Effect in Plasmonic Picocavities: A Classical View to a Quantum Effect.
    Urbieta M; Barbry M; Zhang Y; Koval P; Sánchez-Portal D; Zabala N; Aizpurua J
    ACS Nano; 2018 Jan; 12(1):585-595. PubMed ID: 29298379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum mechanical study of the coupling of plasmon excitations to atomic-scale electron transport.
    Song P; Nordlander P; Gao S
    J Chem Phys; 2011 Feb; 134(7):074701. PubMed ID: 21341863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics.
    Gwo S; Chen HY; Lin MH; Sun L; Li X
    Chem Soc Rev; 2016 Oct; 45(20):5672-5716. PubMed ID: 27406697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmon-Assisted Resonant Electron Tunneling in a Scanning Tunneling Microscope Junction.
    Liu S; Wolf M; Kumagai T
    Phys Rev Lett; 2018 Nov; 121(22):226802. PubMed ID: 30547648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics.
    Barbry M; Koval P; Marchesin F; Esteban R; Borisov AG; Aizpurua J; Sánchez-Portal D
    Nano Lett; 2015 May; 15(5):3410-9. PubMed ID: 25915173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resolving the Correlation between Tip-Enhanced Resonance Raman Scattering and Local Electronic States with 1 nm Resolution.
    Liu S; Müller M; Sun Y; Hamada I; Hammud A; Wolf M; Kumagai T
    Nano Lett; 2019 Aug; 19(8):5725-5731. PubMed ID: 31361964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determining Transmission Characteristics from Shot-Noise-Driven Electroluminescence in Single-Molecule Junctions.
    Paoletta AL; Venkataraman L
    Nano Lett; 2024 Feb; 24(6):1931-1935. PubMed ID: 38315038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.