These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 34428071)

  • 21. Influence of an atomistic protrusion at the tip apex on enhancing molecular emission in tunnel junctions: A theoretical study.
    Zhu JZ; Chen G; Ijaz T; Li XG; Dong ZC
    J Chem Phys; 2021 Jun; 154(21):214706. PubMed ID: 34240995
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Advancing Plasmon-Induced Selectivity in Chemical Transformations with Optically Coupled Transmission Electron Microscopy.
    Swearer DF; Bourgeois BB; Angell DK; Dionne JA
    Acc Chem Res; 2021 Oct; 54(19):3632-3642. PubMed ID: 34492177
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tuning Light Emission Crossovers in Atomic-Scale Aluminum Plasmonic Tunnel Junctions.
    Zhu Y; Cui L; Abbasi M; Natelson D
    Nano Lett; 2022 Oct; 22(20):8068-8075. PubMed ID: 36197739
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancement of Radiative Plasmon Decay by Hot Electron Tunneling.
    Wang X; Braun K; Zhang D; Peisert H; Adler H; Chassé T; Meixner AJ
    ACS Nano; 2015 Aug; 9(8):8176-83. PubMed ID: 26200215
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering.
    Zhu W; Crozier KB
    Nat Commun; 2014 Oct; 5():5228. PubMed ID: 25311008
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Many-Body State Description of Single-Molecule Electroluminescence Driven by a Scanning Tunneling Microscope.
    Miwa K; Imada H; Imai-Imada M; Kimura K; Galperin M; Kim Y
    Nano Lett; 2019 May; 19(5):2803-2811. PubMed ID: 30694065
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Atomic-Scale Imaging and Spectroscopy of Electroluminescence at Molecular Interfaces.
    Kuhnke K; Große C; Merino P; Kern K
    Chem Rev; 2017 Apr; 117(7):5174-5222. PubMed ID: 28294599
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Clip-on lens for scanning tunneling luminescence microscopy.
    Cahlík A; Müller CC; Natterer FD
    MethodsX; 2024 Dec; 13():102828. PubMed ID: 39105095
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Site-Dependent Evolution of Electrical Conductance from Tunneling to Atomic Point Contact.
    Kim H; Hasegawa Y
    Phys Rev Lett; 2015 May; 114(20):206801. PubMed ID: 26047248
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unveiling the radiative local density of optical states of a plasmonic nanocavity by STM.
    Martín-Jiménez A; Fernández-Domínguez AI; Lauwaet K; Granados D; Miranda R; García-Vidal FJ; Otero R
    Nat Commun; 2020 Feb; 11(1):1021. PubMed ID: 32094339
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular Tunnel Junction-Controlled High-Order Charge Transfer Plasmon and Fano Resonances.
    Cui X; Qin F; Lai Y; Wang H; Shao L; Chen H; Wang J; Lin HQ
    ACS Nano; 2018 Dec; 12(12):12541-12550. PubMed ID: 30462918
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasmonic lens focused longitudinal field excitation for tip-enhanced Raman spectroscopy.
    Zhang M; Wang J
    Nanoscale Res Lett; 2015; 10():189. PubMed ID: 25977661
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resonant Optical Antennas with Atomic-Sized Tips and Tunable Gaps Achieved by Mechanical Actuation and Electrical Control.
    Gruber CM; Herrmann L; Bellido EP; Dössegger J; Olziersky A; Drechsler U; Puebla-Hellmann G; Botton GA; Novotny L; Lörtscher E
    Nano Lett; 2020 Jun; 20(6):4346-4353. PubMed ID: 32369701
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Picocavities: a Primer.
    Baumberg JJ
    Nano Lett; 2022 Jul; 22(14):5859-5865. PubMed ID: 35793541
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single-Photon Emission Mediated by Single-Electron Tunneling in Plasmonic Nanojunctions.
    Schaeverbeke Q; Avriller R; Frederiksen T; Pistolesi F
    Phys Rev Lett; 2019 Dec; 123(24):246601. PubMed ID: 31922843
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly efficient plasmonic tip design for plasmon nanofocusing in near-field optical microscopy.
    Umakoshi T; Saito Y; Verma P
    Nanoscale; 2016 Mar; 8(10):5634-40. PubMed ID: 26892672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tip-Enhanced Raman Spectroscopy with Picosecond Pulses.
    Klingsporn JM; Sonntag MD; Seideman T; Van Duyne RP
    J Phys Chem Lett; 2014 Jan; 5(1):106-10. PubMed ID: 26276188
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing.
    Chen X; Lindquist NC; Klemme DJ; Nagpal P; Norris DJ; Oh SH
    Nano Lett; 2016 Dec; 16(12):7849-7856. PubMed ID: 27960527
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In situ evaluation of plasmonic enhancement of gold tips for plasmon-enhanced imaging techniques.
    Zhang J; Ruediger A
    Rev Sci Instrum; 2021 May; 92(5):053004. PubMed ID: 34243334
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Visualization of Nanoplasmonic Coupling to Molecular Orbital in Light Emission Induced by Tunneling Electrons.
    Yu A; Li S; Wang H; Chen S; Wu R; Ho W
    Nano Lett; 2018 May; 18(5):3076-3080. PubMed ID: 29660286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.