BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 34428143)

  • 1. A Dual-Modal Approach Using Electromyography and Sonomyography Improves Prediction of Dynamic Ankle Movement: A Case Study.
    Zhang Q; Iyer A; Sun Z; Kim K; Sharma N
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1944-1954. PubMed ID: 34428143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fused ultrasound and electromyography-driven neuromuscular model to improve plantarflexion moment prediction across walking speeds.
    Zhang Q; Fragnito N; Franz JR; Sharma N
    J Neuroeng Rehabil; 2022 Aug; 19(1):86. PubMed ID: 35945600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plantarflexion Moment Prediction during the Walking Stance Phase with an sEMG-Ultrasound Imaging-Driven Model.
    Zhang Q; Fragnito N; Myers A; Sharma N
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6267-6272. PubMed ID: 34892546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Ankle Dorsiflexion Moment by Combined Ultrasound Sonography and Electromyography.
    Zhang Q; Kim K; Sharma N
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):318-327. PubMed ID: 31725385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating Electromyography and Sonomyography Sensor Fusion to Estimate Lower-Limb Kinematics Using Gaussian Process Regression.
    Rabe KG; Fey NP
    Front Robot AI; 2022; 9():716545. PubMed ID: 35386586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Non-Invasive Ankle Joint Effort Prediction Methods for Use in Neurorehabilitation Using Electromyography and Ultrasound Imaging.
    Zhang Q; Iyer A; Kim K; Sharma N
    IEEE Trans Biomed Eng; 2021 Mar; 68(3):1044-1055. PubMed ID: 32759078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ankle Dorsiflexion Strength Monitoring by Combining Sonomyography and Electromyography.
    Zhang Q; Sheng Z; Moore-Clingenpeel F; Kim K; Sharma N
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():240-245. PubMed ID: 31374636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A deep learning method to predict ankle joint moment during walking at different speeds with ultrasound imaging: A framework for assistive devices control.
    Zhang Q; Fragnito N; Bao X; Sharma N
    Wearable Technol; 2022; 3():e20. PubMed ID: 38486894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of Sonomyographic and Electromyographic Sensing for Continuous Estimation of Joint Torque During Ambulation on Multiple Terrains.
    Rabe KG; Lenzi T; Fey NP
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2635-2644. PubMed ID: 34878978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning to extract muscle fascicle length changes from dynamic ultrasound images in real-time.
    Rosa LG; Zia JS; Inan OT; Sawicki GS
    PLoS One; 2021; 16(5):e0246611. PubMed ID: 34038426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous online prediction of lower limb joints angles based on sEMG signals by deep learning approach.
    Song Q; Ma X; Liu Y
    Comput Biol Med; 2023 Sep; 163():107124. PubMed ID: 37315381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of knee joint movement using single-channel sEMG signals with a feature-guided convolutional neural network.
    Zhang S; Lu J; Huo W; Yu N; Han J
    Front Neurorobot; 2022; 16():978014. PubMed ID: 36386394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eversion Strength and Surface Electromyography Measures With and Without Chronic Ankle Instability Measured in 2 Positions.
    Donnelly L; Donovan L; Hart JM; Hertel J
    Foot Ankle Int; 2017 Jul; 38(7):769-778. PubMed ID: 28391722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research on a Calculation Model of Ankle-Joint-Torque-Based sEMG.
    Qiu X; Zhao H; Xu P; Li J
    Sensors (Basel); 2024 May; 24(9):. PubMed ID: 38733012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of wrist angle from sonomyography signals with artificial neural networks technique.
    Shi J; Zheng Y; Yan Z
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3549-52. PubMed ID: 17946186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in joint range of motion and muscle-tendon unit stiffness after varying amounts of dynamic stretching.
    Mizuno T
    J Sports Sci; 2017 Nov; 35(21):2157-2163. PubMed ID: 27892823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Principal postural acceleration and myoelectric activity: Interrelationship and relevance for characterizing neuromuscular function in postural control.
    Promsri A; Mohr M; Federolf P
    Hum Mov Sci; 2021 Jun; 77():102792. PubMed ID: 33862279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of muscle co-contraction using supersonic shear wave imaging.
    Raiteri BJ; Hug F; Cresswell AG; Lichtwark GA
    J Biomech; 2016 Feb; 49(3):493-5. PubMed ID: 26776929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transferable multi-modal fusion in knee angles and gait phases for their continuous prediction.
    Guo Z; Zheng H; Wu H; Zhang J; Zhou G; Long J
    J Neural Eng; 2023 May; 20(3):. PubMed ID: 37059084
    [No Abstract]   [Full Text] [Related]  

  • 20. Performances of one-dimensional sonomyography and surface electromyography in tracking guided patterns of wrist extension.
    Guo JY; Zheng YP; Huang QH; Chen X; He JF; Chan HL
    Ultrasound Med Biol; 2009 Jun; 35(6):894-902. PubMed ID: 19329244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.