These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism. Xiong Z; Wang D; Liu X; Zhong F; Wan X; Li X; Li Z; Luo X; Chen K; Jiang H; Zheng M J Med Chem; 2020 Aug; 63(16):8749-8760. PubMed ID: 31408336 [TBL] [Abstract][Full Text] [Related]
26. The impact of chemoinformatics on drug discovery in the pharmaceutical industry. Martinez-Mayorga K; Madariaga-Mazon A; Medina-Franco JL; Maggiora G Expert Opin Drug Discov; 2020 Mar; 15(3):293-306. PubMed ID: 31965870 [No Abstract] [Full Text] [Related]
27. Computer-aided drug discovery research at a global contract research organization. Kitchen DB J Comput Aided Mol Des; 2017 Mar; 31(3):309-318. PubMed ID: 27804014 [TBL] [Abstract][Full Text] [Related]
28. Current methods and challenges for deep learning in drug discovery. Schroedl S Drug Discov Today Technol; 2019 Dec; 32-33():9-17. PubMed ID: 33386100 [TBL] [Abstract][Full Text] [Related]
29. Deep Learning in Structure-Based Drug Design. Anighoro A Methods Mol Biol; 2022; 2390():261-271. PubMed ID: 34731473 [TBL] [Abstract][Full Text] [Related]
30. Deep learning methods for molecular representation and property prediction. Li Z; Jiang M; Wang S; Zhang S Drug Discov Today; 2022 Dec; 27(12):103373. PubMed ID: 36167282 [TBL] [Abstract][Full Text] [Related]
31. Hyperbolic relational graph convolution networks plus: a simple but highly efficient QSAR-modeling method. Wu Z; Jiang D; Hsieh CY; Chen G; Liao B; Cao D; Hou T Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33866354 [TBL] [Abstract][Full Text] [Related]
32. Deep fusion learning facilitates anatomical therapeutic chemical recognition in drug repurposing and discovery. Wang X; Liu M; Zhang Y; He S; Qin C; Li Y; Lu T Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34368838 [TBL] [Abstract][Full Text] [Related]
33. Gram matrix: an efficient representation of molecular conformation and learning objective for molecular pretraining. Xiang W; Zhong F; Ni L; Zheng M; Li X; Shi Q; Wang D Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38990515 [TBL] [Abstract][Full Text] [Related]
34. Learning Molecular Representations for Medicinal Chemistry. Chuang KV; Gunsalus LM; Keiser MJ J Med Chem; 2020 Aug; 63(16):8705-8722. PubMed ID: 32366098 [TBL] [Abstract][Full Text] [Related]
35. DataWarrior: an evaluation of the open-source drug discovery tool. López-López E; Naveja JJ; Medina-Franco JL Expert Opin Drug Discov; 2019 Apr; 14(4):335-341. PubMed ID: 30806519 [TBL] [Abstract][Full Text] [Related]
36. Bionoi: A Voronoi Diagram-Based Representation of Ligand-Binding Sites in Proteins for Machine Learning Applications. Feinstein J; Shi W; Ramanujam J; Brylinski M Methods Mol Biol; 2021; 2266():299-312. PubMed ID: 33759134 [TBL] [Abstract][Full Text] [Related]
37. A spatial-temporal gated attention module for molecular property prediction based on molecular geometry. Li C; Wang J; Niu Z; Yao J; Zeng X Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822856 [TBL] [Abstract][Full Text] [Related]
38. DeepPurpose: a deep learning library for drug-target interaction prediction. Huang K; Fu T; Glass LM; Zitnik M; Xiao C; Sun J Bioinformatics; 2021 Apr; 36(22-23):5545-5547. PubMed ID: 33275143 [TBL] [Abstract][Full Text] [Related]
39. Virtual Compound Libraries in Computer-Assisted Drug Discovery. van Hilten N; Chevillard F; Kolb P J Chem Inf Model; 2019 Feb; 59(2):644-651. PubMed ID: 30624918 [TBL] [Abstract][Full Text] [Related]
40. Analyzing GPCR-Ligand Interactions with the Fragment Molecular Orbital (FMO) Method. Heifetz A; James T; Southey M; Morao I; Fedorov DG; Bodkin MJ; Townsend-Nicholson A Methods Mol Biol; 2020; 2114():163-175. PubMed ID: 32016893 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]