These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Covalently conjugated transforming growth factor-β1 in modular chitosan hydrogels for the effective treatment of articular cartilage defects. Choi B; Kim S; Fan J; Kowalski T; Petrigliano F; Evseenko D; Lee M Biomater Sci; 2015 May; 3(5):742-52. PubMed ID: 26222593 [TBL] [Abstract][Full Text] [Related]
4. Synergetic integrations of bone marrow stem cells and transforming growth factor-β1 loaded chitosan nanoparticles blended silk fibroin injectable hydrogel to enhance repair and regeneration potential in articular cartilage tissue. Zheng D; Chen T; Han L; Lv S; Yin J; Yang K; Wang Y; Xu N Int Wound J; 2022 Aug; 19(5):1023-1038. PubMed ID: 35266304 [TBL] [Abstract][Full Text] [Related]
5. Silk fibroin hydrogel scaffolds incorporated with chitosan nanoparticles repair articular cartilage defects by regulating TGF-β1 and BMP-2. Li Y; Liu Y; Guo Q Arthritis Res Ther; 2021 Feb; 23(1):50. PubMed ID: 33531052 [TBL] [Abstract][Full Text] [Related]
6. Engineering sulfated polysaccharides and silk fibroin based injectable IPN hydrogels with stiffening and growth factor presentation abilities for cartilage tissue engineering. Dixit A; Mahajan A; Saxena R; Chakraborty S; Katti DS Biomater Sci; 2024 Apr; 12(8):2067-2085. PubMed ID: 38470831 [TBL] [Abstract][Full Text] [Related]
7. An injectable heparin-conjugated hyaluronan scaffold for local delivery of transforming growth factor β1 promotes successful chondrogenesis. Levinson C; Lee M; Applegate LA; Zenobi-Wong M Acta Biomater; 2019 Nov; 99():168-180. PubMed ID: 31536840 [TBL] [Abstract][Full Text] [Related]
8. Biodegradable chitosan scaffolds containing microspheres as carriers for controlled transforming growth factor-beta1 delivery for cartilage tissue engineering. Cai DZ; Zeng C; Quan DP; Bu LS; Wang K; Lu HD; Li XF Chin Med J (Engl); 2007 Feb; 120(3):197-203. PubMed ID: 17355821 [TBL] [Abstract][Full Text] [Related]
9. 3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications. Janarthanan G; Tran HN; Cha E; Lee C; Das D; Noh I Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():111008. PubMed ID: 32487412 [TBL] [Abstract][Full Text] [Related]
10. Porous chitosan scaffold containing microspheres loaded with transforming growth factor-beta1: implications for cartilage tissue engineering. Kim SE; Park JH; Cho YW; Chung H; Jeong SY; Lee EB; Kwon IC J Control Release; 2003 Sep; 91(3):365-74. PubMed ID: 12932714 [TBL] [Abstract][Full Text] [Related]
11. Delivery of TGF-beta1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Park H; Temenoff JS; Holland TA; Tabata Y; Mikos AG Biomaterials; 2005 Dec; 26(34):7095-103. PubMed ID: 16023196 [TBL] [Abstract][Full Text] [Related]
12. In vitro release of transforming growth factor-beta 1 from gelatin microparticles encapsulated in biodegradable, injectable oligo(poly(ethylene glycol) fumarate) hydrogels. Holland TA; Tabata Y; Mikos AG J Control Release; 2003 Sep; 91(3):299-313. PubMed ID: 12932709 [TBL] [Abstract][Full Text] [Related]
13. Injectable and thermosensitive TGF-β1-loaded PCEC hydrogel system for in vivo cartilage repair. Zhou T; Li X; Li G; Tian T; Lin S; Shi S; Liao J; Cai X; Lin Y Sci Rep; 2017 Sep; 7(1):10553. PubMed ID: 28874815 [TBL] [Abstract][Full Text] [Related]
14. Covalent and injectable chitosan-chondroitin sulfate hydrogels embedded with chitosan microspheres for drug delivery and tissue engineering. Fan M; Ma Y; Tan H; Jia Y; Zou S; Guo S; Zhao M; Huang H; Ling Z; Chen Y; Hu X Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():67-74. PubMed ID: 27987759 [TBL] [Abstract][Full Text] [Related]
15. The Cocktail Effect of BMP-2 and TGF-β1 Loaded in Visible Light-Cured Glycol Chitosan Hydrogels for the Enhancement of Bone Formation in a Rat Tibial Defect Model. Yoon SJ; Yoo Y; Nam SE; Hyun H; Lee DW; Um S; Kim SY; Hong SO; Yang DH; Chun HJ Mar Drugs; 2018 Sep; 16(10):. PubMed ID: 30257482 [TBL] [Abstract][Full Text] [Related]
16. Low-Molecular-Weight Heparin-Functionalized Chitosan-Chondroitin Sulfate Hydrogels for Controlled Release of TGF-β3 and Chen YR; Zhou ZX; Zhang JY; Yuan FZ; Xu BB; Guan J; Han C; Jiang D; Yang YY; Yu JK Front Chem; 2019; 7():745. PubMed ID: 31737612 [TBL] [Abstract][Full Text] [Related]
17. A composite hydrogel scaffold based on collagen and carboxymethyl chitosan for cartilage regeneration through one-step chemical crosslinking. Lin Y; Chen S; Liu Y; Guo F; Miao Q; Huang H Int J Biol Macromol; 2023 Jan; 226():706-715. PubMed ID: 36526059 [TBL] [Abstract][Full Text] [Related]
18. Enhanced dual network hydrogels consisting of thiolated chitosan and silk fibroin for cartilage tissue engineering. Liu J; Yang B; Li M; Li J; Wan Y Carbohydr Polym; 2020 Jan; 227():115335. PubMed ID: 31590851 [TBL] [Abstract][Full Text] [Related]
19. Improved accumulation of TGF-β by photopolymerized chitosan/silk protein bio-hydrogel matrix to improve differentiations of mesenchymal stem cells in articular cartilage tissue regeneration. Shao J; Ding Z; Li L; Chen Y; Zhu J; Qian Q J Photochem Photobiol B; 2020 Jan; 203():111744. PubMed ID: 31887637 [TBL] [Abstract][Full Text] [Related]
20. Articular Joint-Simulating Mechanical Load Activates Endogenous TGF-β in a Highly Cellularized Bioadhesive Hydrogel for Cartilage Repair. Behrendt P; Ladner Y; Stoddart MJ; Lippross S; Alini M; Eglin D; Armiento AR Am J Sports Med; 2020 Jan; 48(1):210-221. PubMed ID: 31877102 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]