These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34428488)

  • 1. The power of two: An artificial microbial consortium for the conversion of inulin into Polyhydroxyalkanoates.
    Corrado I; Petrillo C; Isticato R; Casillo A; Corsaro MM; Sannia G; Pezzella C
    Int J Biol Macromol; 2021 Oct; 189():494-502. PubMed ID: 34428488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of Inulin Hydrolysis by
    Corrado I; Cascelli N; Ntasi G; Birolo L; Sannia G; Pezzella C
    Front Bioeng Biotechnol; 2021; 9():616908. PubMed ID: 33732688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of polyhydroxybutyrate by coupled saccharification-fermentation of inulin.
    Guzmán-Lagunes F; Martínez-dlCruz L; Wongsirichot P; Winterburn J; Montiel C
    Bioprocess Biosyst Eng; 2024 Jan; 47(1):119-129. PubMed ID: 38006410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production and optimization of polyhydroxyalkanoates from non-edible Calophyllum inophyllum oil using Cupriavidus necator.
    Arumugam A; Senthamizhan SG; Ponnusami V; Sudalai S
    Int J Biol Macromol; 2018 Jun; 112():598-607. PubMed ID: 29408394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study on the relation between poly(3-hydroxybutyrate) depolymerases or oligomer hydrolases and molecular weight of polyhydroxyalkanoates accumulating in Cupriavidus necator H16.
    Arikawa H; Sato S; Fujiki T; Matsumoto K
    J Biotechnol; 2016 Jun; 227():94-102. PubMed ID: 27059479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PHA granule formation and degradation by Cupriavidus necator under different nutritional conditions.
    Nygaard D; Yashchuk O; Hermida ÉB
    J Basic Microbiol; 2021 Sep; 61(9):825-834. PubMed ID: 34342882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats.
    Riedel SL; Jahns S; Koenig S; Bock MC; Brigham CJ; Bader J; Stahl U
    J Biotechnol; 2015 Nov; 214():119-27. PubMed ID: 26428087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cupriavidus necator as a platform for polyhydroxyalkanoate production: An overview of strains, metabolism, and modeling approaches.
    Morlino MS; Serna García R; Savio F; Zampieri G; Morosinotto T; Treu L; Campanaro S
    Biotechnol Adv; 2023 Dec; 69():108264. PubMed ID: 37775073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of polyhydroxyalkanoates by the thermophile Cupriavidus cauae PHS1.
    An J; Ha B; Lee SK
    Bioresour Technol; 2023 Mar; 371():128627. PubMed ID: 36646360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous production of poly([R]-3-hydroxybutyrate) by Cupriavidus necator in a multistage bioreactor cascade.
    Atlić A; Koller M; Scherzer D; Kutschera C; Grillo-Fernandes E; Horvat P; Chiellini E; Braunegg G
    Appl Microbiol Biotechnol; 2011 Jul; 91(2):295-304. PubMed ID: 21503760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing polyhydroxyalkanoate (PHA) yields from Cupriavidus necator by using filtered digestate liquors.
    Passanha P; Esteves SR; Kedia G; Dinsdale RM; Guwy AJ
    Bioresour Technol; 2013 Nov; 147():345-352. PubMed ID: 23999264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyhydroxyalkanoates production by engineered Cupriavidus necator from waste material containing lactose.
    Povolo S; Toffano P; Basaglia M; Casella S
    Bioresour Technol; 2010 Oct; 101(20):7902-7. PubMed ID: 20537531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion of fat-containing waste from the margarine manufacturing process into bacterial polyhydroxyalkanoates.
    Morais C; Freitas F; Cruz MV; Paiva A; Dionísio M; Reis MA
    Int J Biol Macromol; 2014 Nov; 71():68-73. PubMed ID: 24794198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chicken feather hydrolysate as an inexpensive complex nitrogen source for PHA production by Cupriavidus necator on waste frying oils.
    Benesova P; Kucera D; Marova I; Obruca S
    Lett Appl Microbiol; 2017 Aug; 65(2):182-188. PubMed ID: 28585326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyhydroxyalkanoates production from effluent of hydrogen fermentation process by Cupriavidus sp. KKU38.
    Saraphirom P; Reungsang A; Plangklang P
    Environ Technol; 2013; 34(1-4):477-83. PubMed ID: 23530362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A feeding strategy for incorporation of canola derived medium-chain-length monomers into the PHA produced by wild-type Cupriavidus necator.
    Rathinasabapathy A; Ramsay BA; Ramsay JA; Pérez-Guevara F
    World J Microbiol Biotechnol; 2014 Apr; 30(4):1409-16. PubMed ID: 24287944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyhydroxyalkanoate synthesis by bacteria isolated from landfill and ETP with pomegranate peels as carbon source.
    Rayasam V; Chavan P; Kumar T
    Arch Microbiol; 2020 Dec; 202(10):2799-2808. PubMed ID: 32747997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of polyhydroxyalkanoates in adaptation of Cupriavidus necator to osmotic pressure and high concentration of copper ions.
    Novackova I; Hrabalova V; Slaninova E; Sedlacek P; Samek O; Koller M; Krzyzanek V; Hrubanova K; Mrazova K; Nebesarova J; Obruca S
    Int J Biol Macromol; 2022 May; 206():977-989. PubMed ID: 35314264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased recovery and improved purity of PHA from recombinant Cupriavidus necator.
    Anis SN; Iqbal NM; Kumar S; Al-Ashraf A
    Bioengineered; 2013; 4(2):115-8. PubMed ID: 23018620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioconversion of plant biomass hydrolysate into bioplastic (polyhydroxyalkanoates) using Ralstonia eutropha 5119.
    Bhatia SK; Gurav R; Choi TR; Jung HR; Yang SY; Moon YM; Song HS; Jeon JM; Choi KY; Yang YH
    Bioresour Technol; 2019 Jan; 271():306-315. PubMed ID: 30290323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.