These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 34429103)

  • 21. Optogenetic Perturbation of Individual C. elegans Pharyngeal Neurons While Monitoring Feeding Behavior.
    Trojanowski NF; Fang-Yen C
    Methods Mol Biol; 2022; 2468():117-131. PubMed ID: 35320563
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitation of the neural silencing activity of anion channelrhodopsins in Caenorhabditis elegans and their applicability for long-term illumination.
    Yamanashi T; Maki M; Kojima K; Shibukawa A; Tsukamoto T; Chowdhury S; Yamanaka A; Takagi S; Sudo Y
    Sci Rep; 2019 May; 9(1):7863. PubMed ID: 31133660
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protocol for near-infrared optogenetics manipulation of neurons and motor behavior in C. elegans using emissive upconversion nanoparticles.
    Wang R; Guo J; Yao H; Luo X; Deng Y; Tian Y; Zhang Y; Gao S
    STAR Protoc; 2024 Mar; 5(1):102858. PubMed ID: 38294907
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An integrated platform enabling optogenetic illumination of Caenorhabditis elegans neurons and muscular force measurement in microstructured environments.
    Qiu Z; Tu L; Huang L; Zhu T; Nock V; Yu E; Liu X; Wang W
    Biomicrofluidics; 2015 Jan; 9(1):014123. PubMed ID: 25759756
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functionally asymmetric motor neurons contribute to coordinating locomotion of
    Tolstenkov O; Van der Auwera P; Steuer Costa W; Bazhanova O; Gemeinhardt TM; Bergs AC; Gottschalk A
    Elife; 2018 Sep; 7():. PubMed ID: 30204083
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An Upconversion Nanoparticle Enables Near Infrared-Optogenetic Manipulation of the Caenorhabditis elegans Motor Circuit.
    Ao Y; Zeng K; Yu B; Miao Y; Hung W; Yu Z; Xue Y; Tan TTY; Xu T; Zhen M; Yang X; Zhang Y; Gao S
    ACS Nano; 2019 Mar; 13(3):3373-3386. PubMed ID: 30681836
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optogenetics in Drosophila Neuroscience.
    Riemensperger T; Kittel RJ; Fiala A
    Methods Mol Biol; 2016; 1408():167-75. PubMed ID: 26965122
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distributed rhythm generators underlie
    Fouad AD; Teng S; Mark JR; Liu A; Alvarez-Illera P; Ji H; Du A; Bhirgoo PD; Cornblath E; Guan SA; Fang-Yen C
    Elife; 2018 Jan; 7():. PubMed ID: 29360037
    [TBL] [Abstract][Full Text] [Related]  

  • 29. LITOS: a versatile LED illumination tool for optogenetic stimulation.
    Höhener TC; Landolt AE; Dessauges C; Hinderling L; Gagliardi PA; Pertz O
    Sci Rep; 2022 Jul; 12(1):13139. PubMed ID: 35907941
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bidirectional near-infrared regulation of motor behavior using orthogonal emissive upconversion nanoparticles.
    Guo J; Chen L; Xiong F; Zhang Y; Wang R; Zhang X; Wen Q; Gao S; Zhang Y
    Nanoscale; 2023 May; 15(17):7845-7853. PubMed ID: 37057392
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Bergs A; Henss T; Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2022; 2468():89-115. PubMed ID: 35320562
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans.
    Leifer AM; Fang-Yen C; Gershow M; Alkema MJ; Samuel AD
    Nat Methods; 2011 Feb; 8(2):147-52. PubMed ID: 21240279
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optogenetics gets the worm.
    San-Miguel A
    Sci Robot; 2021 Jun; 6(55):. PubMed ID: 34193564
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protocol for glial Ca
    Cheng H; Al-Sheikh U; Chen D; Duan D; Kang L
    STAR Protoc; 2022 Mar; 3(1):101169. PubMed ID: 35199034
    [No Abstract]   [Full Text] [Related]  

  • 35. Muscle contraction phenotypic analysis enabled by optogenetics reveals functional relationships of sarcomere components in Caenorhabditis elegans.
    Hwang H; Barnes DE; Matsunaga Y; Benian GM; Ono S; Lu H
    Sci Rep; 2016 Jan; 6():19900. PubMed ID: 26822332
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quasi-Continuous Wave Near-Infrared Excitation of Upconversion Nanoparticles for Optogenetic Manipulation of C. elegans.
    Bansal A; Liu H; Jayakumar MK; Andersson-Engels S; Zhang Y
    Small; 2016 Apr; 12(13):1732-43. PubMed ID: 26849846
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An optogenetic application of proton pump ArchT to C. elegans cells.
    Okazaki A; Takagi S
    Neurosci Res; 2013 Jan; 75(1):29-34. PubMed ID: 23044183
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The €100 lab: A 3D-printable open-source platform for fluorescence microscopy, optogenetics, and accurate temperature control during behaviour of zebrafish, Drosophila, and Caenorhabditis elegans.
    Maia Chagas A; Prieto-Godino LL; Arrenberg AB; Baden T
    PLoS Biol; 2017 Jul; 15(7):e2002702. PubMed ID: 28719603
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photoactivated adenylyl cyclases as optogenetic modulators of neuronal activity.
    Costa WS; Liewald J; Gottschalk A
    Methods Mol Biol; 2014; 1148():161-75. PubMed ID: 24718801
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optical control of ERK and AKT signaling promotes axon regeneration and functional recovery of PNS and CNS in
    Wang Q; Fan H; Li F; Skeeters SS; Krishnamurthy VV; Song Y; Zhang K
    Elife; 2020 Oct; 9():. PubMed ID: 33021199
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.