These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 34429103)

  • 41. A multi-channel device for high-density target-selective stimulation and long-term monitoring of cells and subcellular features in C. elegans.
    Lee H; Kim SA; Coakley S; Mugno P; Hammarlund M; Hilliard MA; Lu H
    Lab Chip; 2014 Dec; 14(23):4513-4522. PubMed ID: 25257026
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Simultaneous optogenetic manipulation and calcium imaging in freely moving C. elegans.
    Shipley FB; Clark CM; Alkema MJ; Leifer AM
    Front Neural Circuits; 2014; 8():28. PubMed ID: 24715856
    [TBL] [Abstract][Full Text] [Related]  

  • 43. BiPOLES is an optogenetic tool developed for bidirectional dual-color control of neurons.
    Vierock J; Rodriguez-Rozada S; Dieter A; Pieper F; Sims R; Tenedini F; Bergs ACF; Bendifallah I; Zhou F; Zeitzschel N; Ahlbeck J; Augustin S; Sauter K; Papagiakoumou E; Gottschalk A; Soba P; Emiliani V; Engel AK; Hegemann P; Wiegert JS
    Nat Commun; 2021 Jul; 12(1):4527. PubMed ID: 34312384
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Towards circuit optogenetics.
    Chen IW; Papagiakoumou E; Emiliani V
    Curr Opin Neurobiol; 2018 Jun; 50():179-189. PubMed ID: 29635216
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An inexpensive programmable optogenetic platform for controlled neuronal activation regimens in
    Crawford Z; San-Miguel A
    APL Bioeng; 2020 Mar; 4(1):016101. PubMed ID: 31934682
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Light-sensitive coupling of rhodopsin and melanopsin to G(i/o) and G(q) signal transduction in Caenorhabditis elegans.
    Cao P; Sun W; Kramp K; Zheng M; Salom D; Jastrzebska B; Jin H; Palczewski K; Feng Z
    FASEB J; 2012 Feb; 26(2):480-91. PubMed ID: 22090313
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Temporal processing and context dependency in
    Liu M; Sharma AK; Shaevitz JW; Leifer AM
    Elife; 2018 Jun; 7():. PubMed ID: 29943731
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Let there be light: zebrafish neurobiology and the optogenetic revolution.
    Wyart C; Del Bene F
    Rev Neurosci; 2011; 22(1):121-30. PubMed ID: 21615266
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pharyngeal pumping in Caenorhabditis elegans depends on tonic and phasic signaling from the nervous system.
    Trojanowski NF; Raizen DM; Fang-Yen C
    Sci Rep; 2016 Mar; 6():22940. PubMed ID: 26976078
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functional interrogation of neural circuits with virally transmitted optogenetic tools.
    De La Crompe B; Coulon P; Diester I
    J Neurosci Methods; 2020 Nov; 345():108905. PubMed ID: 32795553
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Arrhythmogenic effects of mutated L-type Ca 2+-channels on an optogenetically paced muscular pump in Caenorhabditis elegans.
    Schüler C; Fischer E; Shaltiel L; Steuer Costa W; Gottschalk A
    Sci Rep; 2015 Sep; 5():14427. PubMed ID: 26399900
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bimodal activation of different neuron classes with the spectrally red-shifted channelrhodopsin chimera C1V1 in Caenorhabditis elegans.
    Erbguth K; Prigge M; Schneider F; Hegemann P; Gottschalk A
    PLoS One; 2012; 7(10):e46827. PubMed ID: 23056472
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A high-throughput method to deliver targeted optogenetic stimulation to moving C. elegans populations.
    Liu M; Kumar S; Sharma AK; Leifer AM
    PLoS Biol; 2022 Jan; 20(1):e3001524. PubMed ID: 35089912
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Publisher Correction to: An economical and highly adaptable optogenetics system for individual and population-level manipulation of Caenorhabditis elegans.
    Koopman M; Janssen L; Nollen EAA
    BMC Biol; 2021 Sep; 19(1):216. PubMed ID: 34579709
    [No Abstract]   [Full Text] [Related]  

  • 55. Specific expression of channelrhodopsin-2 in single neurons of Caenorhabditis elegans.
    Schmitt C; Schultheis C; Pokala N; Husson SJ; Liewald JF; Bargmann CI; Gottschalk A
    PLoS One; 2012; 7(8):e43164. PubMed ID: 22952643
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Gustatory Neural Circuit of
    Wang L; Sato H; Satoh Y; Tomioka M; Kunitomo H; Iino Y
    J Neurosci; 2017 Feb; 37(8):2097-2111. PubMed ID: 28126744
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A neuropsin-based optogenetic tool for precise control of G
    Dai R; Yu T; Weng D; Li H; Cui Y; Wu Z; Guo Q; Zou H; Wu W; Gao X; Qi Z; Ren Y; Wang S; Li Y; Luo M
    Sci China Life Sci; 2022 Jul; 65(7):1271-1284. PubMed ID: 35579776
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reverse-Correlation Analysis of the Mechanosensation Circuit and Behavior in C. elegans Reveals Temporal and Spatial Encoding.
    Porto DA; Giblin J; Zhao Y; Lu H
    Sci Rep; 2019 Mar; 9(1):5182. PubMed ID: 30914655
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optogenetic control of mitochondrial protonmotive force to impact cellular stress resistance.
    Berry BJ; Trewin AJ; Milliken AS; Baldzizhar A; Amitrano AM; Lim Y; Kim M; Wojtovich AP
    EMBO Rep; 2020 Apr; 21(4):e49113. PubMed ID: 32043300
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optogenetic dissection of neural circuits underlying emotional valence and motivated behaviors.
    Nieh EH; Kim SY; Namburi P; Tye KM
    Brain Res; 2013 May; 1511():73-92. PubMed ID: 23142759
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.