These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 34429791)

  • 1. Non-invasive multi-channel deep learning convolutional neural networks for localization and classification of common hepatic lesions.
    Shah S; Mishra R; Szczurowska A; Guziński M
    Pol J Radiol; 2021; 86():e440-e448. PubMed ID: 34429791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segmentation of lung parenchyma in CT images using CNN trained with the clustering algorithm generated dataset.
    Xu M; Qi S; Yue Y; Teng Y; Xu L; Yao Y; Qian W
    Biomed Eng Online; 2019 Jan; 18(1):2. PubMed ID: 30602393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Learning Model With Convolutional Neural Network for Detecting and Segmenting Hepatocellular Carcinoma in CT: A Preliminary Study.
    Duc VT; Chien PC; Huyen LDM; Chau TLM; Chanh NDT; Soan DTM; Huyen HC; Thanh HM; Hy LNG; Nam NH; Uyen MTT; Nhi LHH; Minh LHN
    Cureus; 2022 Jan; 14(1):e21347. PubMed ID: 35186603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined Transfer Learning and Test-Time Augmentation Improves Convolutional Neural Network-Based Semantic Segmentation of Prostate Cancer from Multi-Parametric MR Images.
    Hoar D; Lee PQ; Guida A; Patterson S; Bowen CV; Merrimen J; Wang C; Rendon R; Beyea SD; Clarke SE
    Comput Methods Programs Biomed; 2021 Oct; 210():106375. PubMed ID: 34500139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cascaded deep convolutional encoder-decoder neural networks for efficient liver tumor segmentation.
    Budak Ü; Guo Y; Tanyildizi E; Şengür A
    Med Hypotheses; 2020 Jan; 134():109431. PubMed ID: 31669758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep convolutional neural network for automatic segmentation and classification of jaw tumors in contrast-enhanced computed tomography images.
    Warin K; Limprasert W; Paipongna T; Chaowchuen S; Vicharueang S
    Int J Oral Maxillofac Surg; 2024 Oct; ():. PubMed ID: 39414518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Weakly-supervised convolutional neural networks of renal tumor segmentation in abdominal CTA images.
    Yang G; Wang C; Yang J; Chen Y; Tang L; Shao P; Dillenseger JL; Shu H; Luo L
    BMC Med Imaging; 2020 Apr; 20(1):37. PubMed ID: 32293303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Segmentation of white matter hyperintensities using convolutional neural networks with global spatial information in routine clinical brain MRI with none or mild vascular pathology.
    Rachmadi MF; Valdés-Hernández MDC; Agan MLF; Di Perri C; Komura T;
    Comput Med Imaging Graph; 2018 Jun; 66():28-43. PubMed ID: 29523002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic segmentation of the prostate on CT images using deep learning and multi-atlas fusion.
    Ma L; Guo R; Zhang G; Tade F; Schuster DM; Nieh P; Master V; Fei B
    Proc SPIE Int Soc Opt Eng; 2017 Feb; 10133():. PubMed ID: 30220767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole liver segmentation based on deep learning and manual adjustment for clinical use in SIRT.
    Tang X; Jafargholi Rangraz E; Coudyzer W; Bertels J; Robben D; Schramm G; Deckers W; Maleux G; Baete K; Verslype C; Gooding MJ; Deroose CM; Nuyts J
    Eur J Nucl Med Mol Imaging; 2020 Nov; 47(12):2742-2752. PubMed ID: 32314026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI.
    Hamm CA; Wang CJ; Savic LJ; Ferrante M; Schobert I; Schlachter T; Lin M; Duncan JS; Weinreb JC; Chapiro J; Letzen B
    Eur Radiol; 2019 Jul; 29(7):3338-3347. PubMed ID: 31016442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of convolutional neural network training strategies for cone-beam CT image segmentation.
    Minnema J; Wolff J; Koivisto J; Lucka F; Batenburg KJ; Forouzanfar T; van Eijnatten M
    Comput Methods Programs Biomed; 2021 Aug; 207():106192. PubMed ID: 34062493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic Diagnosis of Hepatocellular Carcinoma and Metastases Based on Computed Tomography Images.
    Zossou VS; Rodrigue Gnangnon FH; Biaou O; de Vathaire F; Allodji RS; Ezin EC
    J Imaging Inform Med; 2024 Sep; ():. PubMed ID: 39227538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic bladder segmentation from CT images using deep CNN and 3D fully connected CRF-RNN.
    Xu X; Zhou F; Liu B
    Int J Comput Assist Radiol Surg; 2018 Jul; 13(7):967-975. PubMed ID: 29556905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification.
    Al-Antari MA; Al-Masni MA; Choi MT; Han SM; Kim TS
    Int J Med Inform; 2018 Sep; 117():44-54. PubMed ID: 30032964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of focal liver lesions in CT images using convolutional neural networks with lesion information augmented patches and synthetic data augmentation.
    Lee H; Lee H; Hong H; Bae H; Lim JS; Kim J
    Med Phys; 2021 Sep; 48(9):5029-5046. PubMed ID: 34287951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving liver lesions classification on CT/MRI images based on Hounsfield Units attenuation and deep learning.
    Phan AC; Cao HP; Le TN; Trieu TN; Phan TC
    Gene Expr Patterns; 2023 Mar; 47():119289. PubMed ID: 36574537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Deep-Learning and Conventional Machine-Learning Methods for the Automatic Recognition of the Hepatocellular Carcinoma Areas from Ultrasound Images.
    Brehar R; Mitrea DA; Vancea F; Marita T; Nedevschi S; Lupsor-Platon M; Rotaru M; Badea RI
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32485986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning with Convolutional Neural Network for Differentiation of Liver Masses at Dynamic Contrast-enhanced CT: A Preliminary Study.
    Yasaka K; Akai H; Abe O; Kiryu S
    Radiology; 2018 Mar; 286(3):887-896. PubMed ID: 29059036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Esophagus segmentation in CT via 3D fully convolutional neural network and random walk.
    Fechter T; Adebahr S; Baltas D; Ben Ayed I; Desrosiers C; Dolz J
    Med Phys; 2017 Dec; 44(12):6341-6352. PubMed ID: 28940372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.