BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34429907)

  • 1. Variable precipitation leads to dynamic range limits of forest songbirds at a forest-grassland ecotone.
    Sinnott EA; Papeş M; O'Connell TJ
    Ecol Evol; 2021 Aug; 11(16):11123-11133. PubMed ID: 34429907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drought effects on the stability of forest-grassland ecotones under gradual climate change.
    Barros C; Thuiller W; Münkemüller T
    PLoS One; 2018; 13(10):e0206138. PubMed ID: 30356292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mixed-severity fire history at a forest-grassland ecotone in west central British Columbia, Canada.
    Harvey JE; Smith DJ; Veblen TT
    Ecol Appl; 2017 Sep; 27(6):1746-1760. PubMed ID: 28434190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global estimates of stress-reflecting indices reveal key climatic drivers of climate-induced forest range shifts.
    Hirata A; Kominami Y; Ohashi H; Tsuyama I; Tanaka N; Nakao K; Hijioka Y; Matsui T
    Sci Total Environ; 2022 Jun; 824():153697. PubMed ID: 35143798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Historical and event-based bioclimatic suitability predicts regional forest vulnerability to compound effects of severe drought and bark beetle infestation.
    Lloret F; Kitzberger T
    Glob Chang Biol; 2018 May; 24(5):1952-1964. PubMed ID: 29316042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Persistent yet vulnerable: resurvey of an Abies ecotone reveals few differences but vulnerability to climate change.
    Nelson KN; O'Dean E; Knapp EE; Parker AJ; Bisbing SM
    Ecology; 2021 Dec; 102(12):e03525. PubMed ID: 34467519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased vapor pressure deficit due to higher temperature leads to greater transpiration and faster mortality during drought for tree seedlings common to the forest-grassland ecotone.
    Will RE; Wilson SM; Zou CB; Hennessey TC
    New Phytol; 2013 Oct; 200(2):366-374. PubMed ID: 23718199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback.
    Jump AS; Ruiz-Benito P; Greenwood S; Allen CD; Kitzberger T; Fensham R; Martínez-Vilalta J; Lloret F
    Glob Chang Biol; 2017 Sep; 23(9):3742-3757. PubMed ID: 28135022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climatic legacy effects on the drought response of the Amazon rainforest.
    Van Passel J; de Keersmaecker W; Bernardino PN; Jing X; Umlauf N; Van Meerbeek K; Somers B
    Glob Chang Biol; 2022 Oct; 28(19):5808-5819. PubMed ID: 35808855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Landscape development, forest fires, and wilderness management.
    Wright HE
    Science; 1974 Nov; 186(4163):487-95. PubMed ID: 17790369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence of widespread topoclimatic limitation for lower treelines of the Intermountain West, United States.
    Urza AK; Weisberg PJ; Dilts T
    Ecol Appl; 2020 Oct; 30(7):e02158. PubMed ID: 32365241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water relations and photosynthetic performance in Larix sibirica growing in the forest-steppe ecotone of northern Mongolia.
    Dulamsuren C; Hauck M; Bader M; Osokhjargal D; Oyungerel S; Nyambayar S; Runge M; Leuschner C
    Tree Physiol; 2009 Jan; 29(1):99-110. PubMed ID: 19203936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States.
    Clark JS; Iverson L; Woodall CW; Allen CD; Bell DM; Bragg DC; D'Amato AW; Davis FW; Hersh MH; Ibanez I; Jackson ST; Matthews S; Pederson N; Peters M; Schwartz MW; Waring KM; Zimmermann NE
    Glob Chang Biol; 2016 Jul; 22(7):2329-52. PubMed ID: 26898361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-future forest vulnerability to drought and fire varies across the western United States.
    Buotte PC; Levis S; Law BE; Hudiburg TW; Rupp DE; Kent JJ
    Glob Chang Biol; 2019 Jan; 25(1):290-303. PubMed ID: 30444042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Weather effects on avian breeding performance and implications of climate change.
    Skagen SK; Adams AA
    Ecol Appl; 2012 Jun; 22(4):1131-45. PubMed ID: 22827123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global change and the distributional dynamics of migratory bird populations wintering in Central America.
    La Sorte FA; Fink D; Blancher PJ; Rodewald AD; Ruiz-Gutierrez V; Rosenberg KV; Hochachka WM; Verburg PH; Kelling S
    Glob Chang Biol; 2017 Dec; 23(12):5284-5296. PubMed ID: 28736872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of historical and current distributions of lone star tick, Amblyomma americanum (Acari: Ixodidae), is consistent with ancestral range recovery.
    Rochlin I; Egizi A; Ginsberg HS
    Exp Appl Acarol; 2023 Jan; 89(1):85-103. PubMed ID: 36482230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pace of past climate change vs. potential bird distributions and land use in the United States.
    Bateman BL; Pidgeon AM; Radeloff VC; VanDerWal J; Thogmartin WE; Vavrus SJ; Heglund PJ
    Glob Chang Biol; 2016 Mar; 22(3):1130-44. PubMed ID: 26691721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extreme climate events counteract the effects of climate and land-use changes in Alpine treelines.
    Barros C; Guéguen M; Douzet R; Carboni M; Boulangeat I; Zimmermann NE; Münkemüller T; Thuiller W
    J Appl Ecol; 2017 Feb; 54(1):39-50. PubMed ID: 28670002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between heatwave-induced forest die-off and climatic suitability in multiple tree species.
    Margalef-Marrase J; Pérez-Navarro MÁ; Lloret F
    Glob Chang Biol; 2020 May; 26(5):3134-3146. PubMed ID: 32064733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.