BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 34430067)

  • 1. Deep Learning-based MSMS Spectra Reduction in Support of Running Multiple Protein Search Engines on Cloud.
    Maabreh M; Qolomany B; Alsmadi I; Gupta A
    Proceedings (IEEE Int Conf Bioinformatics Biomed); 2017 Nov; 2017():1909-1914. PubMed ID: 34430067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep vs. Shallow Learning-based Filters of MSMS Spectra in Support of Protein Search Engines.
    Maabreh M; Qolomany B; Springstead J; Alsmadi I; Gupta A
    Proceedings (IEEE Int Conf Bioinformatics Biomed); 2017 Nov; 2017():1175-1182. PubMed ID: 34408917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative database search engine analysis on massive tandem mass spectra of pork-based food products for halal proteomics.
    Amir SH; Yuswan MH; Aizat WM; Mansor MK; Desa MNM; Yusof YA; Song LK; Mustafa S
    J Proteomics; 2021 Jun; 241():104240. PubMed ID: 33894373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-depth analysis of protein inference algorithms using multiple search engines and well-defined metrics.
    Audain E; Uszkoreit J; Sachsenberg T; Pfeuffer J; Liang X; Hermjakob H; Sanchez A; Eisenacher M; Reinert K; Tabb DL; Kohlbacher O; Perez-Riverol Y
    J Proteomics; 2017 Jan; 150():170-182. PubMed ID: 27498275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloud parallel processing of tandem mass spectrometry based proteomics data.
    Mohammed Y; Mostovenko E; Henneman AA; Marissen RJ; Deelder AM; Palmblad M
    J Proteome Res; 2012 Oct; 11(10):5101-8. PubMed ID: 22916831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative experimental study of distributed storage engines for big spatial data processing using GeoSpark.
    Shin H; Lee K; Kwon HY
    J Supercomput; 2022; 78(2):2556-2579. PubMed ID: 34226796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PepArML: A Meta-Search Peptide Identification Platform for Tandem Mass Spectra.
    Edwards NJ
    Curr Protoc Bioinformatics; 2013 Dec; 44(1323):13.23.1-23. PubMed ID: 25663956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Processing shotgun proteomics data on the Amazon cloud with the trans-proteomic pipeline.
    Slagel J; Mendoza L; Shteynberg D; Deutsch EW; Moritz RL
    Mol Cell Proteomics; 2015 Feb; 14(2):399-404. PubMed ID: 25418363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pValid 2: A deep learning based validation method for peptide identification in shotgun proteomics with increased discriminating power.
    Zhou WJ; Wei ZH; He SM; Chi H
    J Proteomics; 2022 Jan; 251():104414. PubMed ID: 34737111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial Intelligence Algorithm-Based Economic Denial of Sustainability Attack Detection Systems: Cloud Computing Environments.
    Aldhyani THH; Alkahtani H
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning embedder method and tool for mass spectra similarity search.
    Qin C; Luo X; Deng C; Shu K; Zhu W; Griss J; Hermjakob H; Bai M; Perez-Riverol Y
    J Proteomics; 2021 Feb; 232():104070. PubMed ID: 33307250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Reinforcement Learning Based Resource Allocation Strategy in Cloud-Edge Computing System.
    Xu J; Xu Z; Shi B
    Front Bioeng Biotechnol; 2022; 10():908056. PubMed ID: 35992348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein-Level Integration Strategy of Multiengine MS Spectra Search Results for Higher Confidence and Sequence Coverage.
    Zhao P; Zhong J; Liu W; Zhao J; Zhang G
    J Proteome Res; 2017 Dec; 16(12):4446-4454. PubMed ID: 28965417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TIDD: tool-independent and data-dependent machine learning for peptide identification.
    Li H; Na S; Hwang KB; Paek E
    BMC Bioinformatics; 2022 Mar; 23(1):109. PubMed ID: 35354356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Government Cloud Computing Policies: Potential Opportunities for Advancing Military Biomedical Research.
    Lebeda FJ; Zalatoris JJ; Scheerer JB
    Mil Med; 2018 Nov; 183(11-12):e438-e447. PubMed ID: 29425378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A task scheduling algorithm with deadline constraints for distributed clouds in smart cities.
    Zhou J; Liu B; Gao J
    PeerJ Comput Sci; 2023; 9():e1346. PubMed ID: 37346511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailoring to Search Engines: Bottom-Up Proteomics with Collision Energies Optimized for Identification Confidence.
    Révész Á; Milley MG; Nagy K; Szabó D; Kalló G; Csősz É; Vékey K; Drahos L
    J Proteome Res; 2021 Jan; 20(1):474-484. PubMed ID: 33284634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining results of multiple search engines in proteomics.
    Shteynberg D; Nesvizhskii AI; Moritz RL; Deutsch EW
    Mol Cell Proteomics; 2013 Sep; 12(9):2383-93. PubMed ID: 23720762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Driver Fatigue Detection Systems Using Multi-Sensors, Smartphone, and Cloud-Based Computing Platforms: A Comparative Analysis.
    Abbas Q; Alsheddy A
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33374270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of proteomic search engines for the analysis of histone modifications.
    Yuan ZF; Lin S; Molden RC; Garcia BA
    J Proteome Res; 2014 Oct; 13(10):4470-8. PubMed ID: 25167464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.