BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34430295)

  • 1. The use of UAV-based remote sensing to estimate biomass and carbon stock for native desert shrubs.
    Abdullah MM; Al-Ali ZM; Srinivasan S
    MethodsX; 2021; 8():101399. PubMed ID: 34430295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the applicability of UAVs in characterizing desert shrub biomass and developing biological indicators for the selection of suitable revegetation sites.
    Abdullah MM; Al-Ali ZM; Abdullah MT; Srinivasan S; Assi AT; Al Atiqi S
    J Environ Manage; 2021 Jun; 288():112416. PubMed ID: 33831641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Use of Very-High-Resolution Aerial Imagery to Estimate the Structure and Distribution of the
    Abdullah MM; Al-Ali ZM; Abdullah MT; Al-Anzi B
    Plants (Basel); 2021 May; 10(5):. PubMed ID: 34068447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of remote sensing classification methods for monitoring and assessing desert vegetation using a UAV-based multispectral sensor.
    Al-Ali ZM; Abdullah MM; Asadalla NB; Gholoum M
    Environ Monit Assess; 2020 May; 192(6):389. PubMed ID: 32447581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon sequestration capacity of shifting sand dune after establishing new vegetation in the Tengger Desert, northern China.
    Yang H; Li X; Wang Z; Jia R; Liu L; Chen Y; Wei Y; Gao Y; Li G
    Sci Total Environ; 2014 Apr; 478():1-11. PubMed ID: 24530579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring.
    Gillan JK; Karl JW; Duniway M; Elaksher A
    J Environ Manage; 2014 Nov; 144():226-35. PubMed ID: 24973611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring post-fire neighborhood competition effects on pine saplings under different environmental conditions by means of UAV multispectral data and structure-from-motion photogrammetry.
    Fernández-Guisuraga JM; Calvo L; Suárez-Seoane S
    J Environ Manage; 2022 Mar; 305():114373. PubMed ID: 34954682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evapotranspiration Estimation with Small UAVs in Precision Agriculture.
    Niu H; Hollenbeck D; Zhao T; Wang D; Chen Y
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33182824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel strategy for estimating biomass of submerged aquatic vegetation in lake integrating UAV and Sentinel data.
    Lu L; Luo J; Xin Y; Xu Y; Sun Z; Duan H; Xiao Q; Qiu Y; Huang L; Zhao J
    Sci Total Environ; 2024 Feb; 912():169404. PubMed ID: 38104807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring of Antarctica's Fragile Vegetation Using Drone-Based Remote Sensing, Multispectral Imagery and AI.
    Raniga D; Amarasingam N; Sandino J; Doshi A; Barthelemy J; Randall K; Robinson SA; Gonzalez F; Bollard B
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of aboveground biomass of vegetation based on landsat 8 OLI images.
    Zhang Y; Wang R
    Heliyon; 2022 Nov; 8(11):e11099. PubMed ID: 36339769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cost benefit analysis of survey methods for assessing intertidal sediment disturbance: A bait collection case study.
    White SM; Schaefer M; Barfield P; Cantrell R; Watson GJ
    J Environ Manage; 2022 Mar; 306():114386. PubMed ID: 35030426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing Grapevine Biophysical Parameters From Unmanned Aerial Vehicles Hyperspectral Imagery.
    Matese A; Di Gennaro SF; Orlandi G; Gatti M; Poni S
    Front Plant Sci; 2022; 13():898722. PubMed ID: 35769294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting Biomass and Yield in a Tomato Phenotyping Experiment Using UAV Imagery and Random Forest.
    Johansen K; Morton MJL; Malbeteau Y; Aragon B; Al-Mashharawi S; Ziliani MG; Angel Y; Fiene G; Negrão S; Mousa MAA; Tester MA; McCabe MF
    Front Artif Intell; 2020; 3():28. PubMed ID: 33733147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Small unmanned aerial vehicles for low-altitude remote sensing and its application progress in ecology.].
    Sun ZY; Chen YQ; Yang L; Tang GL; Yuan SX; Lin ZW
    Ying Yong Sheng Tai Xue Bao; 2017 Feb; 28(2):528-536. PubMed ID: 29749161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Methodology for Improving Plant Pest Surveillance in Vineyards and Crops Using UAV-Based Hyperspectral and Spatial Data.
    Vanegas F; Bratanov D; Powell K; Weiss J; Gonzalez F
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29342101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic identification of agricultural terraces through object-oriented analysis of very high resolution DSMs and multispectral imagery obtained from an unmanned aerial vehicle.
    Diaz-Varela RA; Zarco-Tejada PJ; Angileri V; Loudjani P
    J Environ Manage; 2014 Feb; 134():117-26. PubMed ID: 24473345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composition and distribution of vegetation in the water level fluctuating zone of the Lantsang cascade reservoir system using UAV multispectral imagery.
    Jiang W; Liu L; Xiao H; Zhu S; Li W; Liu Y
    PLoS One; 2021; 16(3):e0247682. PubMed ID: 33780473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated Identification of River Hydromorphological Features Using UAV High Resolution Aerial Imagery.
    Casado MR; Gonzalez RB; Kriechbaumer T; Veal A
    Sensors (Basel); 2015 Nov; 15(11):27969-89. PubMed ID: 26556355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of forage biomass and vegetation cover in grasslands using UAV imagery.
    Théau J; Lauzier-Hudon É; Aubé L; Devillers N
    PLoS One; 2021; 16(1):e0245784. PubMed ID: 33493223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.