These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 34430337)
21. Correlation between Ionospheric Spatial Decorrelation and Space Weather Intensity for Safety-Critical Differential GNSS Systems. Lee J; Lee J Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31071979 [TBL] [Abstract][Full Text] [Related]
22. Investigation of GIM-TEC disturbances before M ≥ 6.0 inland earthquakes during 2003-2017. Zhu F; Jiang Y Sci Rep; 2020 Oct; 10(1):18038. PubMed ID: 33093593 [TBL] [Abstract][Full Text] [Related]
23. GNSS-Based Non-Negative Absolute Ionosphere Total Electron Content, its Spatial Gradients, Time Derivatives and Differential Code Biases: Bounded-Variable Least-Squares and Taylor Series. Yasyukevich Y; Mylnikova A; Vesnin A Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33036362 [TBL] [Abstract][Full Text] [Related]
24. The Spectrum of Global Electron Content: A New Potential Indicator of Space Weather Activity. Aroca-Farrerons JM; Hernández-Pajares M; Lyu H; Roma-Dollase D; Orus-Perez R; García-Rigo A; Graffigna V; Olivares-Pulido G; Monte-Moreno E; Yang H; Liu Q Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257486 [TBL] [Abstract][Full Text] [Related]
25. Spatial and Temporal Variations of Polar Ionospheric Total Electron Content over Nearly Thirteen Years. Xi H; Jiang H; An J; Wang Z; Xu X; Yan H; Feng C Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31963786 [TBL] [Abstract][Full Text] [Related]
26. Klobuchar, NeQuickG, BDGIM, GLONASS, IRI-2016, IRI-2012, IRI-Plas, NeQuick2, and GEMTEC Ionospheric Models: A Comparison in Total Electron Content and Positioning Domains. Yasyukevich YV; Zatolokin D; Padokhin A; Wang N; Nava B; Li Z; Yuan Y; Yasyukevich A; Chen C; Vesnin A Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430685 [TBL] [Abstract][Full Text] [Related]
27. High-Precision Ionosphere Monitoring Using Continuous Measurements from BDS GEO Satellites. Yang H; Yang X; Zhang Z; Zhao K Sensors (Basel); 2018 Feb; 18(3):. PubMed ID: 29495506 [TBL] [Abstract][Full Text] [Related]
28. Global Ionospheric Modelling using Multi-GNSS: BeiDou, Galileo, GLONASS and GPS. Ren X; Zhang X; Xie W; Zhang K; Yuan Y; Li X Sci Rep; 2016 Sep; 6():33499. PubMed ID: 27629988 [TBL] [Abstract][Full Text] [Related]
29. Study of the Equatorial and Low-Latitude Electrodynamic and Ionospheric Disturbances During the 22-23 June 2015 Geomagnetic Storm Using Ground-Based and Spaceborne Techniques. Astafyeva E; Zakharenkova I; Hozumi K; Alken P; Coïsson P; Hairston MR; Coley WR J Geophys Res Space Phys; 2018 Mar; 123(3):2424-2440. PubMed ID: 29938155 [TBL] [Abstract][Full Text] [Related]
30. Smartphone Positioning and Accuracy Analysis Based on Real-Time Regional Ionospheric Correction Model. Liu Q; Gao C; Peng Z; Zhang R; Shang R Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34199807 [TBL] [Abstract][Full Text] [Related]
31. Ionospheric perturbation during the South American total solar eclipse on 14th December 2020 revealed with the Chilean GPS eyeball. Shrivastava MN; Maurya AK; Kumar KN Sci Rep; 2021 Oct; 11(1):20324. PubMed ID: 34645868 [TBL] [Abstract][Full Text] [Related]
32. A possible space-based tsunami early warning system using observations of the tsunami ionospheric hole. Kamogawa M; Orihara Y; Tsurudome C; Tomida Y; Kanaya T; Ikeda D; Gusman AR; Kakinami Y; Liu JY; Toyoda A Sci Rep; 2016 Dec; 6():37989. PubMed ID: 27905487 [TBL] [Abstract][Full Text] [Related]
33. Ionospheric Phase Compensation for InSAR Measurements Based on the Faraday Rotation Inversion Method. Li B; Wang Z; An J; Zhang B; Geng H; Ma Y; Li M; Qian Y Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33271903 [TBL] [Abstract][Full Text] [Related]
34. A multiresolution inversion for imaging the ionosphere. Yin P; Zheng YN; Mitchell CN; Li B J Geophys Res Space Phys; 2017 Jun; 122(6):6799-6811. PubMed ID: 30034982 [TBL] [Abstract][Full Text] [Related]
35. Accuracy Analysis of International Reference Ionosphere 2016 and NeQuick2 in the Antarctic. Guo Z; Yao Y; Kong J; Chen G; Zhou C; Zhang Q; Shan L; Liu C Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672288 [TBL] [Abstract][Full Text] [Related]
36. A comprehensive method for GNSS data quality determination to improve ionospheric data analysis. Kim M; Seo J; Lee J Sensors (Basel); 2014 Aug; 14(8):14971-93. PubMed ID: 25196005 [TBL] [Abstract][Full Text] [Related]
37. Galileo and BeiDou AltBOC Signals and Their Perspectives for Ionospheric TEC Studies. Chen C; Pavlov I; Padokhin A; Yasyukevich Y; Demyanov V; Danilchuk E; Vesnin A Sensors (Basel); 2024 Oct; 24(19):. PubMed ID: 39409512 [TBL] [Abstract][Full Text] [Related]
38. NeQuick-G and Android Devices: A Compromise between Computational Burden and Accuracy. Gioia C; Borio D Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33086746 [TBL] [Abstract][Full Text] [Related]
39. Assessing Global Ionosphere TEC Maps with Satellite Altimetry and Ionospheric Radio Occultation Observations. Li W; Huang L; Zhang S; Chai Y Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31842443 [TBL] [Abstract][Full Text] [Related]
40. A New Real-Time Cycle Slip Detection and Repair Method under High Ionospheric Activity for a Triple-Frequency GPS/BDS Receiver. Liu W; Jin X; Wu M; Hu J; Wu Y Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29389879 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]