These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 34430748)
81. Thermal Energy Storage and Heat Transfer of Nano-Enhanced Phase Change Material (NePCM) in a Shell and Tube Thermal Energy Storage (TES) Unit with a Partial Layer of Eccentric Copper Foam. Ghalambaz M; Mehryan SAM; Ayoubloo KA; Hajjar A; El Kadri M; Younis O; Pour MS; Hulme-Smith C Molecules; 2021 Mar; 26(5):. PubMed ID: 33803388 [TBL] [Abstract][Full Text] [Related]
82. Solidification Enhancement in a Multi-Tube Latent Heat Storage System for Efficient and Economical Production: Effect of Number, Position and Temperature of the Tubes. Li M; Mahdi JM; Mohammed HI; Bokov DO; Mahmoud MZ; Naghizadeh A; Talebizadehsardari P; Yaïci W Nanomaterials (Basel); 2021 Nov; 11(12):. PubMed ID: 34947559 [TBL] [Abstract][Full Text] [Related]
83. Numerical analysis of the energy-storage performance of a PCM-based triplex-tube containment system equipped with arc-shaped fins. Abed AM; Mouziraji HR; Bakhshi J; Dulaimi A; Mohammed HI; Ibrahem RK; Ben Khedher N; Yaïci W; Mahdi JM Front Chem; 2022; 10():1057196. PubMed ID: 36583152 [TBL] [Abstract][Full Text] [Related]
84. Three-dimensional numerical analysis of convection and conduction cooling of spherical biocrystals with localized heating from synchrotron X-ray beams. Mhaisekar A; Kazmierczak MJ; Banerjee R J Synchrotron Radiat; 2005 May; 12(Pt 3):318-28. PubMed ID: 15840917 [TBL] [Abstract][Full Text] [Related]
85. Design and analysis of phase change material based floor heating system for thermal energy storage. Yun BY; Yang S; Cho HM; Chang SJ; Kim S Environ Res; 2019 Jun; 173():480-488. PubMed ID: 30986650 [TBL] [Abstract][Full Text] [Related]
86. Parameter effect quantification for a phase change material-based lithium-ion battery thermal management system. Morali U Turk J Chem; 2022; 46(5):1620-1631. PubMed ID: 37529740 [TBL] [Abstract][Full Text] [Related]
87. Improving the melting performance in a triple-pipe latent heat storage system using hemispherical and quarter-spherical fins with a staggered arrangement. Abed AM; Mohammed HI; Patra I; Mahdi JM; Arshad A; Sivaraman R; Ibrahem RK; Al-Qrimli FA; Dhahbi S; Talebizadehsardari P Front Chem; 2022; 10():1018265. PubMed ID: 36304743 [TBL] [Abstract][Full Text] [Related]
88. Effect of the Heat Pipe Adiabatic Region. Brahim T; Jemni A J Heat Transfer; 2014 Apr; 136(4):0429011-4290110. PubMed ID: 24895467 [TBL] [Abstract][Full Text] [Related]
89. Challenges Considering the Degradation of Cell Components in Commercial Lithium-Ion Cells: A Review and Evaluation of Present Systems. Kleiner K; Ehrenberg H Top Curr Chem (Cham); 2017 Jun; 375(3):54. PubMed ID: 28470590 [TBL] [Abstract][Full Text] [Related]
90. Improved Melting of Latent Heat Storage Using Fin Arrays with Non-Uniform Dimensions and Distinct Patterns. Najim FT; Mohammed HI; Al-Najjar HMT; Thangavelu L; Mahmoud MZ; Mahdi JM; Tiji ME; Yaïci W; Talebizadehsardari P Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159751 [TBL] [Abstract][Full Text] [Related]
91. Improvement of Phase Change Materials (PCM) Used for Solar Process Heat Applications. Prieto C; Lopez-Roman A; Martínez N; Morera JM; Cabeza LF Molecules; 2021 Feb; 26(5):. PubMed ID: 33652674 [TBL] [Abstract][Full Text] [Related]
92. High Performance Lithium-Ion Hybrid Capacitors Employing Fe Zhang S; Li C; Zhang X; Sun X; Wang K; Ma Y ACS Appl Mater Interfaces; 2017 May; 9(20):17136-17144. PubMed ID: 28474525 [TBL] [Abstract][Full Text] [Related]
93. Mesh-Like Carbon Nanosheets with High-Level Nitrogen Doping for High-Energy Dual-Carbon Lithium-Ion Capacitors. Li Z; Cao L; Chen W; Huang Z; Liu H Small; 2019 Apr; 15(15):e1805173. PubMed ID: 30861630 [TBL] [Abstract][Full Text] [Related]
94. Phase Change Dispersion Made by Condensation-Emulsification. Fischer LJ; Dhulipala S; Varanasi KK ACS Omega; 2021 Dec; 6(50):34580-34595. PubMed ID: 34963943 [TBL] [Abstract][Full Text] [Related]
95. Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors. Yu P; Cao G; Yi S; Zhang X; Li C; Sun X; Wang K; Ma Y Nanoscale; 2018 Mar; 10(13):5906-5913. PubMed ID: 29537043 [TBL] [Abstract][Full Text] [Related]
96. Influence of solvent on temperature and thermal peak broadening in capillary zone electrophoresis. Porras SP; Marziali E; Gas B; Kenndler E Electrophoresis; 2003 May; 24(10):1553-64. PubMed ID: 12761785 [TBL] [Abstract][Full Text] [Related]
97. Heat Transfer Performance of a 3D-Printed Aluminum Flat-Plate Oscillating Heat Pipe Finned Radiator. Xiao X; He Y; Wang Q; Yang Y; Chang C; Ji Y Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202515 [TBL] [Abstract][Full Text] [Related]
98. Challenges facing lithium batteries and electrical double-layer capacitors. Choi NS; Chen Z; Freunberger SA; Ji X; Sun YK; Amine K; Yushin G; Nazar LF; Cho J; Bruce PG Angew Chem Int Ed Engl; 2012 Oct; 51(40):9994-10024. PubMed ID: 22965900 [TBL] [Abstract][Full Text] [Related]
99. Electrospun N-Doped Hierarchical Porous Carbon Nanofiber with Improved Degree of Graphitization for High-Performance Lithium Ion Capacitor. Shi R; Han C; Xu X; Qin X; Xu L; Li H; Li J; Wong CP; Li B Chemistry; 2018 Jul; 24(41):10460-10467. PubMed ID: 29761568 [TBL] [Abstract][Full Text] [Related]
100. Melting phase change heat transfer in a quasi-petal tube thermal energy storage unit. Mehryan SAM; Raahemifar K; Ramezani SR; Hajjar A; Younis O; Talebizadeh Sardari P; Ghalambaz M PLoS One; 2021; 16(3):e0246972. PubMed ID: 33760813 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]