These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 34431011)

  • 1. Altered Media Flow and Tablet Position as Factors of How Air Bubbles Affect Dissolution of Disintegrating and Non-disintegrating Tablets Using a USP 4 Flow-Through Cell Apparatus.
    Yoshida H; Teruya K; Abe Y; Furuishi T; Fukuzawa K; Yonemochi E; Izutsu KI
    AAPS PharmSciTech; 2021 Aug; 22(7):227. PubMed ID: 34431011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Pump Pulsation on Hydrodynamic Properties and Dissolution Profiles in Flow-Through Dissolution Systems (USP 4).
    Yoshida H; Kuwana A; Shibata H; Izutsu K; Goda Y
    Pharm Res; 2016 Jun; 33(6):1327-36. PubMed ID: 26869175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting dissolution via hydrodynamics: salicylic acid tablets in flow through cell dissolution.
    Cammarn SR; Sakr A
    Int J Pharm; 2000 May; 201(2):199-209. PubMed ID: 10878326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational hydrodynamic comparison of a mini vessel and a USP 2 dissolution testing system to predict the dynamic operating conditions for similarity of dissolution performance.
    Wang B; Bredael G; Armenante PM
    Int J Pharm; 2018 Mar; 539(1-2):112-130. PubMed ID: 29341921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamic, mass transfer, and dissolution effects induced by tablet location during dissolution testing.
    Bai G; Armenante PM
    J Pharm Sci; 2009 Apr; 98(4):1511-31. PubMed ID: 18781589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Velocity Field Visualization in USP Dissolution Apparatus 3 Using Particle Image Velocimetry.
    Perivilli S; Prevost R; Stippler E
    Pharm Res; 2017 Jun; 34(6):1330-1337. PubMed ID: 28409325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of basket mesh size on the hydrodynamics of a partially filled (500 mL) USP rotating basket dissolution testing Apparatus 1.
    Sirasitthichoke C; Patel S; Reuter KG; Hermans A; Bredael G; Armenante PM
    Int J Pharm; 2024 Jun; 658():124209. PubMed ID: 38718973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a performance verification test for USP apparatus 4.
    Eaton JW; Tran D; Hauck WW; Stippler ES
    Pharm Res; 2012 Feb; 29(2):345-51. PubMed ID: 21826572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the Hydrodynamics in the USP Basket Apparatus Using Computational Fluid Dynamics.
    Martinez AF; Sinha K; Nere N; Slade R; Castleberry S
    J Pharm Sci; 2020 Mar; 109(3):1231-1241. PubMed ID: 31743682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and computational determination of the hydrodynamics of mini vessel dissolution testing systems.
    Wang B; Armenante PM
    Int J Pharm; 2016 Aug; 510(1):336-49. PubMed ID: 27317988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel off-center paddle impeller (OPI) dissolution testing system for reproducible dissolution testing of solid dosage forms.
    Wang Y; Armenante PM
    J Pharm Sci; 2012 Feb; 101(2):746-60. PubMed ID: 22083630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the Influence of Tablet Location Inside Dissolution Test Apparatus on Polymer Erosion and Drug Release of a Surface-Erodible Sustained-Release Tablet Using Computational Simulation Methods.
    Lou H; Hageman MJ
    AAPS PharmSciTech; 2021 Mar; 22(3):99. PubMed ID: 33709248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MRI studies of the hydrodynamics in a USP 4 dissolution testing cell.
    Shiko G; Gladden LF; Sederman AJ; Connolly PC; Butler JM
    J Pharm Sci; 2011 Mar; 100(3):976-91. PubMed ID: 20949631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved drug dissolution and product characterization using a crescent-shaped spindle.
    Qureshi SA
    J Pharm Pharmacol; 2004 Sep; 56(9):1135-41. PubMed ID: 15324482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the effect of solubility and density gradients on local hydrodynamics and drug dissolution in the USP 4 dissolution apparatus.
    D'Arcy DM; Liu B; Corrigan OI
    Int J Pharm; 2011 Oct; 419(1-2):175-85. PubMed ID: 21843609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies of variability in dissolution testing with USP apparatus 2.
    Gao Z; Moore TW; Smith AP; Doub WH; Westenberger BJ
    J Pharm Sci; 2007 Jul; 96(7):1794-801. PubMed ID: 17252609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of disintegration of rapidly disintegrating tablets by a visiometric liquid jet-mediated disintegration apparatus.
    Desai PM; Liew CV; Heng PW
    Int J Pharm; 2013 Feb; 442(1-2):65-73. PubMed ID: 22985772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cause of high variability in drug dissolution testing and its impact on setting tolerances.
    Qureshi SA; Shabnam J
    Eur J Pharm Sci; 2001 Jan; 12(3):271-6. PubMed ID: 11113646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic investigation of USP dissolution test apparatus II.
    Bai G; Armenante PM; Plank RV; Gentzler M; Ford K; Harmon P
    J Pharm Sci; 2007 Sep; 96(9):2327-49. PubMed ID: 17573698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic Approach to Understanding the Influence of USP Apparatus I and II on Dissolution Kinetics of Tablets with Different Operating Release Mechanisms.
    Lu Z; Fassihi R
    AAPS PharmSciTech; 2017 Feb; 18(2):462-472. PubMed ID: 27106916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.