BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34431099)

  • 1. Preformed aerenchyma determines the differential tolerance response under partial submergence imposed by fresh and saline water flooding in rice.
    Chakraborty K; Ray S; Vijayan J; Molla KA; Nagar R; Jena P; Mondal S; Panda BB; Shaw BP; Swain P; Chattopadhyay K; Sarkar RK
    Physiol Plant; 2021 Dec; 173(4):1597-1615. PubMed ID: 34431099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct mechanisms for aerenchyma formation in leaf sheaths of rice genotypes displaying a quiescence or escape strategy for flooding tolerance.
    Parlanti S; Kudahettige NP; Lombardi L; Mensuali-Sodi A; Alpi A; Perata P; Pucciariello C
    Ann Bot; 2011 Jun; 107(8):1335-43. PubMed ID: 21489969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing flooding tolerance in rice: combining tolerance of submergence and of stagnant flooding.
    Kato Y; Collard BCY; Septiningsih EM; Ismail AM
    Ann Bot; 2020 Jan; 124(7):1199-1210. PubMed ID: 31306479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An NADPH Oxidase RBOH Functions in Rice Roots during Lysigenous Aerenchyma Formation under Oxygen-Deficient Conditions.
    Yamauchi T; Yoshioka M; Fukazawa A; Mori H; Nishizawa NK; Tsutsumi N; Yoshioka H; Nakazono M
    Plant Cell; 2017 Apr; 29(4):775-790. PubMed ID: 28351990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sub1 QTL confers submergence tolerance in rice through nitro-oxidative regulation and phytohormonal signaling.
    Basu S; Monika ; Kumari S; Kumar G
    Plant Physiol Biochem; 2024 Jun; 211():108682. PubMed ID: 38714133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitro-oxidative stress induces the formation of roots' cortical aerenchyma in rice under osmotic stress.
    Basu S; Kumari S; Kumar A; Shahid R; Kumar S; Kumar G
    Physiol Plant; 2021 Jun; 172(2):963-975. PubMed ID: 33826753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling-based age-dependent analysis reveals the net patterns of ethylene-dependent and -independent aerenchyma formation in rice and maize roots.
    Yamauchi T; Nakazono M
    Plant Sci; 2022 Aug; 321():111340. PubMed ID: 35696932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flooding-adaptive root and shoot traits in rice.
    Lin C; Zhang Z; Shen X; Liu D; Pedersen O
    Funct Plant Biol; 2024 Jan; 51():. PubMed ID: 38167593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SUB1A-dependent and -independent mechanisms are involved in the flooding tolerance of wild rice species.
    Niroula RK; Pucciariello C; Ho VT; Novi G; Fukao T; Perata P
    Plant J; 2012 Oct; 72(2):282-93. PubMed ID: 22709342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. METALLOTHIONEIN genes encoding ROS scavenging enzymes are down-regulated in the root cortex during inducible aerenchyma formation in rice.
    Yamauchi T; Fukazawa A; Nakazono M
    Plant Signal Behav; 2017 Nov; 12(11):e1388976. PubMed ID: 29035627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerenchyma formation in the rice stem and its promotion by H2O2.
    Steffens B; Geske T; Sauter M
    New Phytol; 2011 Apr; 190(2):369-78. PubMed ID: 21039565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leaf gas films delay salt entry and enhance underwater photosynthesis and internal aeration of Melilotus siculus submerged in saline water.
    Teakle NL; Colmer TD; Pedersen O
    Plant Cell Environ; 2014 Oct; 37(10):2339-49. PubMed ID: 24393094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flooding tolerance of Carex species in relation to field distribution and aerenchyma formation.
    Visser EJW; Bögemann GM; VAN DE Steeg HM; Pierik R; Blom CWPM
    New Phytol; 2000 Oct; 148(1):93-103. PubMed ID: 33863031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Halopriming in the submergence-tolerant rice variety improved the resilience to salinity and combined salinity-submergence at the seedling stage.
    Libron JAMA; Putri HH; Bore EK; Chepkoech R; Akagi I; Odama E; Goto K; Tamaru S; Yabuta S; Sakagami JI
    Plant Physiol Biochem; 2024 Mar; 208():108494. PubMed ID: 38513520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partial Submergence Tolerance in Rice (
    Ai Nio S; Siahaan R; Peter Mantilen Ludong D
    Pak J Biol Sci; 2019 Jan; 22(2):95-102. PubMed ID: 30972991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gas film retention and underwater photosynthesis during field submergence of four contrasting rice genotypes.
    Winkel A; Pedersen O; Ella E; Ismail AM; Colmer TD
    J Exp Bot; 2014 Jul; 65(12):3225-33. PubMed ID: 24759881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethylene is not involved in adaptive responses to flooding in the Amazonian wild rice species Oryza grandiglumis.
    Okishio T; Sasayama D; Hirano T; Akimoto M; Itoh K; Azuma T
    J Plant Physiol; 2015 Feb; 174():49-54. PubMed ID: 25462966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice.
    Fukao T; Yeung E; Bailey-Serres J
    Plant Cell; 2011 Jan; 23(1):412-27. PubMed ID: 21239643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethylene-dependent aerenchyma formation in adventitious roots is regulated differently in rice and maize.
    Yamauchi T; Tanaka A; Mori H; Takamure I; Kato K; Nakazono M
    Plant Cell Environ; 2016 Oct; 39(10):2145-57. PubMed ID: 27169562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flooding tolerance in Rice: adaptive mechanism and marker-assisted selection breeding approaches.
    Haque MA; Rafii MY; Yusoff MM; Ali NS; Yusuff O; Arolu F; Anisuzzaman M
    Mol Biol Rep; 2023 Mar; 50(3):2795-2812. PubMed ID: 36592290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.