These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Protein II influences ferrichrome-iron transport in Escherichia coli K12. Coulton JW; Braun V J Gen Microbiol; 1979 Jan; 110(1):211-20. PubMed ID: 372490 [TBL] [Abstract][Full Text] [Related]
5. ATP synthesis driven by protonmotive force imposed across Escherichia coli cell membranes. Grinius L; Slusnyte R; Griniuviene B FEBS Lett; 1975 Oct; 57(3):290-3. PubMed ID: 241667 [No Abstract] [Full Text] [Related]
6. Functions in outer and inner membranes of Escherichia coli for ferrichrome transport. Wookey PJ; Hussein S; Braun V J Bacteriol; 1981 Jun; 146(3):1158-61. PubMed ID: 7016830 [TBL] [Abstract][Full Text] [Related]
7. Determination of the membrane potential in bacterial membrane vesicles from the accumulation of N-methyldeptropine. Ruifrok PG; Konings WN; Meijer DK FEBS Lett; 1979 Sep; 105(1):171-6. PubMed ID: 385342 [No Abstract] [Full Text] [Related]
8. Energy-coupling of the transport system of Escherichia coli dependent on maltose-binding protein. Ferenci T; Boos W; Schwartz M; Szmelcman S Eur J Biochem; 1977 May; 75(1):187-93. PubMed ID: 140802 [No Abstract] [Full Text] [Related]
9. Mechanism of lactose translocation in membrane vesicles from Escherichia coli. 1. Effect of pH on efflux, exchange, and counterflow. Kaczorowski GJ; Kaback HR Biochemistry; 1979 Aug; 18(17):3691-7. PubMed ID: 38836 [No Abstract] [Full Text] [Related]
10. The electrochemical gradient of protons and its relationship to active transport in Escherichia coli membrane vesicles. Ramos S; Schuldiner S; Kaback HR Proc Natl Acad Sci U S A; 1976 Jun; 73(6):1892-6. PubMed ID: 6961 [TBL] [Abstract][Full Text] [Related]
11. Kinetics of lactose transport into Escherichia coli in the presence and absence of a protonmotive force. Page MG; West IC FEBS Lett; 1980 Nov; 120(2):187-91. PubMed ID: 7002613 [No Abstract] [Full Text] [Related]
12. Siderophore protection against colicins M, B, V, and Ia in Escherichia coli. Wayne R; Frick K; Neilands JB J Bacteriol; 1976 Apr; 126(1):7-12. PubMed ID: 131121 [TBL] [Abstract][Full Text] [Related]
13. In vitro translocation of protein across Escherichia coli membrane vesicles requires both the proton motive force and ATP. Yamane K; Ichihara S; Mizushima S J Biol Chem; 1987 Feb; 262(5):2358-62. PubMed ID: 3029075 [TBL] [Abstract][Full Text] [Related]
14. ATP-linked sodium transport in Streptococcus faecalis. II. Energy coupling in everted membrane vesicles. Heefner DL; Kobayashi H; Harold FM J Biol Chem; 1980 Dec; 255(23):11403-7. PubMed ID: 6777379 [No Abstract] [Full Text] [Related]
15. Direct determination of the properties of peptide transport systems in Escherichia coli, using a fluorescent-labeling procedure. Payne JW; Bell G J Bacteriol; 1979 Jan; 137(1):447-55. PubMed ID: 368023 [TBL] [Abstract][Full Text] [Related]
16. Uptake of ferrienterochelin by Escherichia coli: energy dependent stage of uptake. Pugsley AP; Reeves P J Bacteriol; 1977 Apr; 130(1):26-36. PubMed ID: 140161 [TBL] [Abstract][Full Text] [Related]
18. Effects of monovalent cation ionophores on calcium uptake by rabbit skeletal muscle sarcoplasmic reticulum vesicles. Louis CF; Fudyma G; Nash-Adler P; Shigekawa M; Katz AM FEBS Lett; 1978 Sep; 93(1):61-4. PubMed ID: 81144 [No Abstract] [Full Text] [Related]
19. The effect of ionophores on phosphate and arsenate transport in Micrococcus lysodeikticus. Friedberg I FEBS Lett; 1977 Sep; 81(2):264-6. PubMed ID: 21813 [No Abstract] [Full Text] [Related]
20. Iron transport in Escherichia coli: uptake and modification of ferrichrome. Hartmann A; Braun V J Bacteriol; 1980 Jul; 143(1):246-55. PubMed ID: 6995431 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]