These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 34431404)

  • 1. Liver proteome response to torpor in a basoendothermic mammal,
    Khudyakov JI; Treat MD; Shanafelt MC; Deyarmin JS; Neely BA; van Breukelen F
    Am J Physiol Regul Integr Comp Physiol; 2021 Oct; 321(4):R614-R624. PubMed ID: 34431404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extreme physiological plasticity in a hibernating basoendothermic mammal,
    Treat MD; Scholer L; Barrett B; Khachatryan A; McKenna AJ; Reyes T; Rezazadeh A; Ronkon CF; Samora D; Santamaria JF; Silva Rubio C; Sutherland E; Richardson J; Lighton JRB; van Breukelen F
    J Exp Biol; 2018 Oct; 221(Pt 20):. PubMed ID: 30158129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Torpor and hibernation in a basal placental mammal, the Lesser Hedgehog Tenrec Echinops telfairi.
    Lovegrove BG; Génin F
    J Comp Physiol B; 2008 Aug; 178(6):691-8. PubMed ID: 18368412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytoskeletal regulation dominates temperature-sensitive proteomic changes of hibernation in forebrain of 13-lined ground squirrels.
    Hindle AG; Martin SL
    PLoS One; 2013; 8(8):e71627. PubMed ID: 23951209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mammal survival at the Cretaceous-Palaeogene boundary: metabolic homeostasis in prolonged tropical hibernation in tenrecs.
    Lovegrove BG; Lobban KD; Levesque DL
    Proc Biol Sci; 2014 Dec; 281(1796):20141304. PubMed ID: 25339721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic changes associated with the long winter fast dominate the liver proteome in 13-lined ground squirrels.
    Hindle AG; Grabek KR; Epperson LE; Karimpour-Fard A; Martin SL
    Physiol Genomics; 2014 May; 46(10):348-61. PubMed ID: 24642758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic rate and body temperature reduction during hibernation and daily torpor.
    Geiser F
    Annu Rev Physiol; 2004; 66():239-74. PubMed ID: 14977403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ambient Temperature Cycles Affect Daily Torpor and Hibernation Patterns in Malagasy Tenrecs.
    Dausmann KH; Levesque DL; Wein J; Nowack J
    Front Physiol; 2020; 11():522. PubMed ID: 32547412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kidney proteome changes provide evidence for a dynamic metabolism and regional redistribution of plasma proteins during torpor-arousal cycles of hibernation.
    Jani A; Orlicky DJ; Karimpour-Fard A; Epperson LE; Russell RL; Hunter LE; Martin SL
    Physiol Genomics; 2012 Jul; 44(14):717-27. PubMed ID: 22643061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationships between body temperature, thermal conductance, Q10 and energy metabolism during daily torpor and hibernation in rodents.
    Snyder GK; Nestler JR
    J Comp Physiol B; 1990; 159(6):667-75. PubMed ID: 2335595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-Torpid Heterothermy in Mammals: Another Category along the Homeothermy-Hibernation Continuum.
    Levesque DL; Breit AM; Brown E; Nowack J; Welman S
    Integr Comp Biol; 2023 Dec; 63(5):1039-1048. PubMed ID: 37407285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thrifty Females, Frisky Males: Winter Energetics of Hibernating Bats from a Cold Climate.
    Czenze ZJ; Jonasson KA; Willis CKR
    Physiol Biochem Zool; 2017; 90(4):502-511. PubMed ID: 28641050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased homeothermy during reproduction in a basal placental mammal.
    Levesque DL; Lovegrove BG
    J Exp Biol; 2014 May; 217(Pt 9):1535-42. PubMed ID: 24501138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hibernation and torpor in tropical and subtropical bats in relation to energetics, extinctions, and the evolution of endothermy.
    Geiser F; Stawski C
    Integr Comp Biol; 2011 Sep; 51(3):337-48. PubMed ID: 21700575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does Basal Metabolism Set the Limit for Metabolic Downregulation during Torpor?
    Boratyński JS; Szafrańska PA
    Physiol Biochem Zool; 2018; 91(5):1057-1067. PubMed ID: 30141728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of metabolism during hibernation and daily torpor in mammals and birds: temperature effect or physiological inhibition?
    Geiser F
    J Comp Physiol B; 1988; 158(1):25-37. PubMed ID: 3385059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is the torpor-arousal cycle of hibernation controlled by a non-temperature-compensated circadian clock?
    Malan A
    J Biol Rhythms; 2010 Jun; 25(3):166-75. PubMed ID: 20484688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasma proteomic analysis of active and torpid greater mouse-eared bats (Myotis myotis).
    Hecht AM; Braun BC; Krause E; Voigt CC; Greenwood AD; Czirják GÁ
    Sci Rep; 2015 Nov; 5():16604. PubMed ID: 26586174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Torpor in the Patagonian opossum (Lestodelphys halli): implications for the evolution of daily torpor and hibernation.
    Geiser F; Martin GM
    Naturwissenschaften; 2013 Oct; 100(10):975-81. PubMed ID: 24045765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of daily torpor and hibernation in birds and mammals: importance of body size.
    Geiser F
    Clin Exp Pharmacol Physiol; 1998 Sep; 25(9):736-9. PubMed ID: 9750966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.